Loading…
Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries
Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale c...
Saved in:
Published in: | Nano energy 2022-12, Vol.103, p.107765, Article 107765 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303 |
container_end_page | |
container_issue | |
container_start_page | 107765 |
container_title | Nano energy |
container_volume | 103 |
creator | Ren, Haixia Zheng, Lumin Li, Yu Ni, Qiao Qian, Ji Li, Ying Li, Qiaojun Liu, Mingquan Bai, Ying Weng, Suting Wang, Xuefeng Wu, Feng Wu, Chuan |
description | Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V.
[Display omitted]
•The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction. |
doi_str_mv | 10.1016/j.nanoen.2022.107765 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nanoen_2022_107765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211285522008424</els_id><sourcerecordid>S2211285522008424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxXNQsNR-Aw_5AqlJNrvbkyDFPwXBi57DbDJpU7abmqTF9dObsp6dy4PhvcfMj5A7wZeCi-Z-vxxgCDgsJZeyrNq2qa_ITEohmFzV9Q1ZpLTnZZpatELOSNocjqfo88jOvouQfRigpzjkGI5jUeh6TPTrBMmzH4yBpRzBD7SHESNaGr69RWog74ItRhci3fntjp1Dn2GLNAXrTwdWamkHOWP0mG7JtYM-4eJP5-Tz-elj_cre3l8268c3ZireZAZ1J5S1nIMA5K4F1wpbGeuQ25VqXXkOG9chGFUZtQKramPRtLxpVDHyak7U1GtiSCmi08foDxBHLbi-8NJ7PfHSF1564lViD1MMy21nj1En43EwaH1Ek7UN_v-CX7QlfBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</creator><creatorcontrib>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</creatorcontrib><description>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V.
[Display omitted]
•The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2022.107765</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anionic oxygen redox ; Impurity-vibrational entropy ; Layered oxide cathodes ; Quasi-zero-strain ; Zr decoration</subject><ispartof>Nano energy, 2022-12, Vol.103, p.107765, Article 107765</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</citedby><cites>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ren, Haixia</creatorcontrib><creatorcontrib>Zheng, Lumin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Ni, Qiao</creatorcontrib><creatorcontrib>Qian, Ji</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Li, Qiaojun</creatorcontrib><creatorcontrib>Liu, Mingquan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><title>Nano energy</title><description>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V.
[Display omitted]
•The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</description><subject>Anionic oxygen redox</subject><subject>Impurity-vibrational entropy</subject><subject>Layered oxide cathodes</subject><subject>Quasi-zero-strain</subject><subject>Zr decoration</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxXNQsNR-Aw_5AqlJNrvbkyDFPwXBi57DbDJpU7abmqTF9dObsp6dy4PhvcfMj5A7wZeCi-Z-vxxgCDgsJZeyrNq2qa_ITEohmFzV9Q1ZpLTnZZpatELOSNocjqfo88jOvouQfRigpzjkGI5jUeh6TPTrBMmzH4yBpRzBD7SHESNaGr69RWog74ItRhci3fntjp1Dn2GLNAXrTwdWamkHOWP0mG7JtYM-4eJP5-Tz-elj_cre3l8268c3ZireZAZ1J5S1nIMA5K4F1wpbGeuQ25VqXXkOG9chGFUZtQKramPRtLxpVDHyak7U1GtiSCmi08foDxBHLbi-8NJ7PfHSF1564lViD1MMy21nj1En43EwaH1Ek7UN_v-CX7QlfBE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ren, Haixia</creator><creator>Zheng, Lumin</creator><creator>Li, Yu</creator><creator>Ni, Qiao</creator><creator>Qian, Ji</creator><creator>Li, Ying</creator><creator>Li, Qiaojun</creator><creator>Liu, Mingquan</creator><creator>Bai, Ying</creator><creator>Weng, Suting</creator><creator>Wang, Xuefeng</creator><creator>Wu, Feng</creator><creator>Wu, Chuan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><author>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anionic oxygen redox</topic><topic>Impurity-vibrational entropy</topic><topic>Layered oxide cathodes</topic><topic>Quasi-zero-strain</topic><topic>Zr decoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Haixia</creatorcontrib><creatorcontrib>Zheng, Lumin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Ni, Qiao</creatorcontrib><creatorcontrib>Qian, Ji</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Li, Qiaojun</creatorcontrib><creatorcontrib>Liu, Mingquan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Haixia</au><au>Zheng, Lumin</au><au>Li, Yu</au><au>Ni, Qiao</au><au>Qian, Ji</au><au>Li, Ying</au><au>Li, Qiaojun</au><au>Liu, Mingquan</au><au>Bai, Ying</au><au>Weng, Suting</au><au>Wang, Xuefeng</au><au>Wu, Feng</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</atitle><jtitle>Nano energy</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>103</volume><spage>107765</spage><pages>107765-</pages><artnum>107765</artnum><issn>2211-2855</issn><abstract>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V.
[Display omitted]
•The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2022.107765</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-2855 |
ispartof | Nano energy, 2022-12, Vol.103, p.107765, Article 107765 |
issn | 2211-2855 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_nanoen_2022_107765 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anionic oxygen redox Impurity-vibrational entropy Layered oxide cathodes Quasi-zero-strain Zr decoration |
title | Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity-vibrational%20entropy%20enables%20quasi-zero-strain%20layered%20oxide%20cathodes%20for%20high-voltage%20sodium-ion%20batteries&rft.jtitle=Nano%20energy&rft.au=Ren,%20Haixia&rft.date=2022-12-01&rft.volume=103&rft.spage=107765&rft.pages=107765-&rft.artnum=107765&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2022.107765&rft_dat=%3Celsevier_cross%3ES2211285522008424%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |