Loading…

Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries

Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale c...

Full description

Saved in:
Bibliographic Details
Published in:Nano energy 2022-12, Vol.103, p.107765, Article 107765
Main Authors: Ren, Haixia, Zheng, Lumin, Li, Yu, Ni, Qiao, Qian, Ji, Li, Ying, Li, Qiaojun, Liu, Mingquan, Bai, Ying, Weng, Suting, Wang, Xuefeng, Wu, Feng, Wu, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303
cites cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303
container_end_page
container_issue
container_start_page 107765
container_title Nano energy
container_volume 103
creator Ren, Haixia
Zheng, Lumin
Li, Yu
Ni, Qiao
Qian, Ji
Li, Ying
Li, Qiaojun
Liu, Mingquan
Bai, Ying
Weng, Suting
Wang, Xuefeng
Wu, Feng
Wu, Chuan
description Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V. [Display omitted] •The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.
doi_str_mv 10.1016/j.nanoen.2022.107765
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nanoen_2022_107765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211285522008424</els_id><sourcerecordid>S2211285522008424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxXNQsNR-Aw_5AqlJNrvbkyDFPwXBi57DbDJpU7abmqTF9dObsp6dy4PhvcfMj5A7wZeCi-Z-vxxgCDgsJZeyrNq2qa_ITEohmFzV9Q1ZpLTnZZpatELOSNocjqfo88jOvouQfRigpzjkGI5jUeh6TPTrBMmzH4yBpRzBD7SHESNaGr69RWog74ItRhci3fntjp1Dn2GLNAXrTwdWamkHOWP0mG7JtYM-4eJP5-Tz-elj_cre3l8268c3ZireZAZ1J5S1nIMA5K4F1wpbGeuQ25VqXXkOG9chGFUZtQKramPRtLxpVDHyak7U1GtiSCmi08foDxBHLbi-8NJ7PfHSF1564lViD1MMy21nj1En43EwaH1Ek7UN_v-CX7QlfBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</creator><creatorcontrib>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</creatorcontrib><description>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V. [Display omitted] •The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2022.107765</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anionic oxygen redox ; Impurity-vibrational entropy ; Layered oxide cathodes ; Quasi-zero-strain ; Zr decoration</subject><ispartof>Nano energy, 2022-12, Vol.103, p.107765, Article 107765</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</citedby><cites>FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ren, Haixia</creatorcontrib><creatorcontrib>Zheng, Lumin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Ni, Qiao</creatorcontrib><creatorcontrib>Qian, Ji</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Li, Qiaojun</creatorcontrib><creatorcontrib>Liu, Mingquan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><title>Nano energy</title><description>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V. [Display omitted] •The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</description><subject>Anionic oxygen redox</subject><subject>Impurity-vibrational entropy</subject><subject>Layered oxide cathodes</subject><subject>Quasi-zero-strain</subject><subject>Zr decoration</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxXNQsNR-Aw_5AqlJNrvbkyDFPwXBi57DbDJpU7abmqTF9dObsp6dy4PhvcfMj5A7wZeCi-Z-vxxgCDgsJZeyrNq2qa_ITEohmFzV9Q1ZpLTnZZpatELOSNocjqfo88jOvouQfRigpzjkGI5jUeh6TPTrBMmzH4yBpRzBD7SHESNaGr69RWog74ItRhci3fntjp1Dn2GLNAXrTwdWamkHOWP0mG7JtYM-4eJP5-Tz-elj_cre3l8268c3ZireZAZ1J5S1nIMA5K4F1wpbGeuQ25VqXXkOG9chGFUZtQKramPRtLxpVDHyak7U1GtiSCmi08foDxBHLbi-8NJ7PfHSF1564lViD1MMy21nj1En43EwaH1Ek7UN_v-CX7QlfBE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ren, Haixia</creator><creator>Zheng, Lumin</creator><creator>Li, Yu</creator><creator>Ni, Qiao</creator><creator>Qian, Ji</creator><creator>Li, Ying</creator><creator>Li, Qiaojun</creator><creator>Liu, Mingquan</creator><creator>Bai, Ying</creator><creator>Weng, Suting</creator><creator>Wang, Xuefeng</creator><creator>Wu, Feng</creator><creator>Wu, Chuan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</title><author>Ren, Haixia ; Zheng, Lumin ; Li, Yu ; Ni, Qiao ; Qian, Ji ; Li, Ying ; Li, Qiaojun ; Liu, Mingquan ; Bai, Ying ; Weng, Suting ; Wang, Xuefeng ; Wu, Feng ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anionic oxygen redox</topic><topic>Impurity-vibrational entropy</topic><topic>Layered oxide cathodes</topic><topic>Quasi-zero-strain</topic><topic>Zr decoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Haixia</creatorcontrib><creatorcontrib>Zheng, Lumin</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Ni, Qiao</creatorcontrib><creatorcontrib>Qian, Ji</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Li, Qiaojun</creatorcontrib><creatorcontrib>Liu, Mingquan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Haixia</au><au>Zheng, Lumin</au><au>Li, Yu</au><au>Ni, Qiao</au><au>Qian, Ji</au><au>Li, Ying</au><au>Li, Qiaojun</au><au>Liu, Mingquan</au><au>Bai, Ying</au><au>Weng, Suting</au><au>Wang, Xuefeng</au><au>Wu, Feng</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries</atitle><jtitle>Nano energy</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>103</volume><spage>107765</spage><pages>107765-</pages><artnum>107765</artnum><issn>2211-2855</issn><abstract>Layered transition metal oxides based on cationic/anionic redox have gained much attention for high-energy-density sodium ion batteries (SIBs). However, irreversible oxygen activity and unstable crystal structure lead to fast capacity fading and undesired rate performance, limiting its large-scale commercial application. Based on the solid-state physics theory, here we demonstrate that the electrochemical capability in P2-type Na2/3Ni1/3Mn2/3O2 cathode can be significantly improved when impurity-vibrational entropy is increased by simultaneously constructing surface ZrO2 coating and Zr4+ doping (P2-NaNM@Zr). In-situ and ex-situ X-ray diffraction (XRD) verifies that quasi-zero-strain P2-NaNM@Zr cathode maintains P2 phase structure during the charging/discharging process, achieving an ultra-low volume change (1.18%) upon Na+ entire extraction at a high cut-off voltage of 4.5 V. Besides, according to First-principles calculations, we first investigate that the oxygen vacancy formation energy of P2-NaNM@Zr (−2.11 eV) is higher than that of sample P2-NaNM (−2.61 eV), strongly indicating stable and reversible anionic redox reaction. As a result, P2-NaNM@Zr material reveals highly Na storage performance, retaining 86% capacity retention after 1000 cycles at the rate of 5 C within the voltage range of 2.5 − 4.0 V, delivering reversible capacity of 132 mA h g−1 after 50 cycles within 2.0 − 4.5 V. [Display omitted] •The structure stability and cell capability can be improved by Zr decoration.•NaNM@Zr exhibits an ultra-low volume change of 1.18% upon Na+ entire extraction.•NaNM@Zr has high oxygen vacancy formation energy and stable oxygen redox reaction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2022.107765</doi></addata></record>
fulltext fulltext
identifier ISSN: 2211-2855
ispartof Nano energy, 2022-12, Vol.103, p.107765, Article 107765
issn 2211-2855
language eng
recordid cdi_crossref_primary_10_1016_j_nanoen_2022_107765
source ScienceDirect Freedom Collection 2022-2024
subjects Anionic oxygen redox
Impurity-vibrational entropy
Layered oxide cathodes
Quasi-zero-strain
Zr decoration
title Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity-vibrational%20entropy%20enables%20quasi-zero-strain%20layered%20oxide%20cathodes%20for%20high-voltage%20sodium-ion%20batteries&rft.jtitle=Nano%20energy&rft.au=Ren,%20Haixia&rft.date=2022-12-01&rft.volume=103&rft.spage=107765&rft.pages=107765-&rft.artnum=107765&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2022.107765&rft_dat=%3Celsevier_cross%3ES2211285522008424%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-a5b14dd00a1ae0f7af71d3cdfe0d847f776e6fbeac43c48ad45cdec706641d303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true