Loading…

An adaptive growing grid model for a non-stationary environment

The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2023-09, Vol.550, p.126405, Article 126405
Main Authors: Hung, Chihli, Wermter, Stefan, Chi, Yu-Liang, Tsai, Chih-Fong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933
container_end_page
container_issue
container_start_page 126405
container_title Neurocomputing (Amsterdam)
container_volume 550
creator Hung, Chihli
Wermter, Stefan
Chi, Yu-Liang
Tsai, Chih-Fong
description The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.
doi_str_mv 10.1016/j.neucom.2023.126405
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_neucom_2023_126405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231223005283</els_id><sourcerecordid>S0925231223005283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gYu-QGty2ybpRhkG_2DAja7DneR2yDBNhqSO-PZW6trVWX2Hj8PYreCV4ELe7atAnzYOFXCoKwGy4e0ZWwitoNSg5Tlb8A7aEmoBl-wq5z3nQgnoFuxhFQp0eBz9iYpdil8-7CZ6VwzR0aHoYyqwCDGUecTRx4Dpu6Bw8imGgcJ4zS56PGS6-eOSfTw9vq9fys3b8-t6tSkttO1Y2i13W47YoUAtO61BcsWFReRCW462b2zTklIIvbSqA4UO0LbabaWirq6XrJm9NsWcE_XmmPwwnTGCm98IZm_mCOY3gpkjTLP7eUbTt5OnZLL1FCw5n8iOxkX_v-AHPg1oCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An adaptive growing grid model for a non-stationary environment</title><source>ScienceDirect Freedom Collection</source><creator>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</creator><creatorcontrib>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</creatorcontrib><description>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2023.126405</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive growing grid ; Growing grid ; Neural clustering ; Non-stationary environment ; Self-organizing maps</subject><ispartof>Neurocomputing (Amsterdam), 2023-09, Vol.550, p.126405, Article 126405</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</cites><orcidid>0000-0002-8061-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hung, Chihli</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><creatorcontrib>Chi, Yu-Liang</creatorcontrib><creatorcontrib>Tsai, Chih-Fong</creatorcontrib><title>An adaptive growing grid model for a non-stationary environment</title><title>Neurocomputing (Amsterdam)</title><description>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</description><subject>Adaptive growing grid</subject><subject>Growing grid</subject><subject>Neural clustering</subject><subject>Non-stationary environment</subject><subject>Self-organizing maps</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gYu-QGty2ybpRhkG_2DAja7DneR2yDBNhqSO-PZW6trVWX2Hj8PYreCV4ELe7atAnzYOFXCoKwGy4e0ZWwitoNSg5Tlb8A7aEmoBl-wq5z3nQgnoFuxhFQp0eBz9iYpdil8-7CZ6VwzR0aHoYyqwCDGUecTRx4Dpu6Bw8imGgcJ4zS56PGS6-eOSfTw9vq9fys3b8-t6tSkttO1Y2i13W47YoUAtO61BcsWFReRCW462b2zTklIIvbSqA4UO0LbabaWirq6XrJm9NsWcE_XmmPwwnTGCm98IZm_mCOY3gpkjTLP7eUbTt5OnZLL1FCw5n8iOxkX_v-AHPg1oCw</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Hung, Chihli</creator><creator>Wermter, Stefan</creator><creator>Chi, Yu-Liang</creator><creator>Tsai, Chih-Fong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8061-4410</orcidid></search><sort><creationdate>20230914</creationdate><title>An adaptive growing grid model for a non-stationary environment</title><author>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive growing grid</topic><topic>Growing grid</topic><topic>Neural clustering</topic><topic>Non-stationary environment</topic><topic>Self-organizing maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Chihli</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><creatorcontrib>Chi, Yu-Liang</creatorcontrib><creatorcontrib>Tsai, Chih-Fong</creatorcontrib><collection>CrossRef</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Chihli</au><au>Wermter, Stefan</au><au>Chi, Yu-Liang</au><au>Tsai, Chih-Fong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive growing grid model for a non-stationary environment</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>550</volume><spage>126405</spage><pages>126405-</pages><artnum>126405</artnum><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2023.126405</doi><orcidid>https://orcid.org/0000-0002-8061-4410</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2023-09, Vol.550, p.126405, Article 126405
issn 0925-2312
1872-8286
language eng
recordid cdi_crossref_primary_10_1016_j_neucom_2023_126405
source ScienceDirect Freedom Collection
subjects Adaptive growing grid
Growing grid
Neural clustering
Non-stationary environment
Self-organizing maps
title An adaptive growing grid model for a non-stationary environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20growing%20grid%20model%20for%20a%20non-stationary%20environment&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Hung,%20Chihli&rft.date=2023-09-14&rft.volume=550&rft.spage=126405&rft.pages=126405-&rft.artnum=126405&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2023.126405&rft_dat=%3Celsevier_cross%3ES0925231223005283%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true