Loading…
An adaptive growing grid model for a non-stationary environment
The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2023-09, Vol.550, p.126405, Article 126405 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933 |
container_end_page | |
container_issue | |
container_start_page | 126405 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 550 |
creator | Hung, Chihli Wermter, Stefan Chi, Yu-Liang Tsai, Chih-Fong |
description | The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment. |
doi_str_mv | 10.1016/j.neucom.2023.126405 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_neucom_2023_126405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231223005283</els_id><sourcerecordid>S0925231223005283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gYu-QGty2ybpRhkG_2DAja7DneR2yDBNhqSO-PZW6trVWX2Hj8PYreCV4ELe7atAnzYOFXCoKwGy4e0ZWwitoNSg5Tlb8A7aEmoBl-wq5z3nQgnoFuxhFQp0eBz9iYpdil8-7CZ6VwzR0aHoYyqwCDGUecTRx4Dpu6Bw8imGgcJ4zS56PGS6-eOSfTw9vq9fys3b8-t6tSkttO1Y2i13W47YoUAtO61BcsWFReRCW462b2zTklIIvbSqA4UO0LbabaWirq6XrJm9NsWcE_XmmPwwnTGCm98IZm_mCOY3gpkjTLP7eUbTt5OnZLL1FCw5n8iOxkX_v-AHPg1oCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An adaptive growing grid model for a non-stationary environment</title><source>ScienceDirect Freedom Collection</source><creator>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</creator><creatorcontrib>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</creatorcontrib><description>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2023.126405</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive growing grid ; Growing grid ; Neural clustering ; Non-stationary environment ; Self-organizing maps</subject><ispartof>Neurocomputing (Amsterdam), 2023-09, Vol.550, p.126405, Article 126405</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</cites><orcidid>0000-0002-8061-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hung, Chihli</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><creatorcontrib>Chi, Yu-Liang</creatorcontrib><creatorcontrib>Tsai, Chih-Fong</creatorcontrib><title>An adaptive growing grid model for a non-stationary environment</title><title>Neurocomputing (Amsterdam)</title><description>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</description><subject>Adaptive growing grid</subject><subject>Growing grid</subject><subject>Neural clustering</subject><subject>Non-stationary environment</subject><subject>Self-organizing maps</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gYu-QGty2ybpRhkG_2DAja7DneR2yDBNhqSO-PZW6trVWX2Hj8PYreCV4ELe7atAnzYOFXCoKwGy4e0ZWwitoNSg5Tlb8A7aEmoBl-wq5z3nQgnoFuxhFQp0eBz9iYpdil8-7CZ6VwzR0aHoYyqwCDGUecTRx4Dpu6Bw8imGgcJ4zS56PGS6-eOSfTw9vq9fys3b8-t6tSkttO1Y2i13W47YoUAtO61BcsWFReRCW462b2zTklIIvbSqA4UO0LbabaWirq6XrJm9NsWcE_XmmPwwnTGCm98IZm_mCOY3gpkjTLP7eUbTt5OnZLL1FCw5n8iOxkX_v-AHPg1oCw</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Hung, Chihli</creator><creator>Wermter, Stefan</creator><creator>Chi, Yu-Liang</creator><creator>Tsai, Chih-Fong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8061-4410</orcidid></search><sort><creationdate>20230914</creationdate><title>An adaptive growing grid model for a non-stationary environment</title><author>Hung, Chihli ; Wermter, Stefan ; Chi, Yu-Liang ; Tsai, Chih-Fong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive growing grid</topic><topic>Growing grid</topic><topic>Neural clustering</topic><topic>Non-stationary environment</topic><topic>Self-organizing maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Chihli</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><creatorcontrib>Chi, Yu-Liang</creatorcontrib><creatorcontrib>Tsai, Chih-Fong</creatorcontrib><collection>CrossRef</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Chihli</au><au>Wermter, Stefan</au><au>Chi, Yu-Liang</au><au>Tsai, Chih-Fong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive growing grid model for a non-stationary environment</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>550</volume><spage>126405</spage><pages>126405-</pages><artnum>126405</artnum><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>The self-organizing map (SOM) represents high-dimensional input samples by a 2-dimensional output topological structure, whereby similar input samples are mapped onto the same output unit or neighboring units on a map for visualization. Although many extended SOM models have been proposed, the need to determine a grid structure of SOM before learning, and the lack of adaptability to rapid changes in input data have not yet been fully overcome. This research proposes an adaptive growing grid (AGG) model, which is a novel neural self-organizing map (SOM), for projecting high-dimensional input samples onto an output grid. Due to the need for a grid structure for visualization, the AGG uses both growing and pruning functions and an adaptive learning process in order to adapt its output grid structure and learning function to constantly and rapidly changing input data in a non-stationary environment. The proposed AGG is tested on four basic data sets and one cross-domain data set. In addition, the t-test is used to test whether the proposed AGG outperforms the benchmark model, the growing grid (GG). Based on three evaluation measures, i.e. average quantization error (AQE), topographic error (TE) and dead unit ratio (DUR), the AGG significantly outperforms the GG in a non-stationary environment.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2023.126405</doi><orcidid>https://orcid.org/0000-0002-8061-4410</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2023-09, Vol.550, p.126405, Article 126405 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_neucom_2023_126405 |
source | ScienceDirect Freedom Collection |
subjects | Adaptive growing grid Growing grid Neural clustering Non-stationary environment Self-organizing maps |
title | An adaptive growing grid model for a non-stationary environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20growing%20grid%20model%20for%20a%20non-stationary%20environment&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Hung,%20Chihli&rft.date=2023-09-14&rft.volume=550&rft.spage=126405&rft.pages=126405-&rft.artnum=126405&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2023.126405&rft_dat=%3Celsevier_cross%3ES0925231223005283%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-cb0db0aa9a1a86988260701caa018c0acf4c45e77a2f6c7927ad2ac58db67e933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |