Loading…

JARViS: Detecting actions in video using unified actor-scene context relation modeling

Video action detection (VAD) is a formidable vision task that involves the localization and classification of actions within the spatial and temporal dimensions of a video clip. Among the myriad VAD architectures, two-stage VAD methods utilize a pre-trained person detector to extract the region of i...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2024-12, Vol.610, p.128616, Article 128616
Main Authors: Lee, Seok Hwan, Son, Taein, Seo, Soo Won, Kim, Jisong, Choi, Jun Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Video action detection (VAD) is a formidable vision task that involves the localization and classification of actions within the spatial and temporal dimensions of a video clip. Among the myriad VAD architectures, two-stage VAD methods utilize a pre-trained person detector to extract the region of interest features, subsequently employing these features for action detection. However, the performance of two-stage VAD methods has been limited as they depend solely on localized actor features to infer action semantics. In this study, we propose a new two-stage VAD framework called Joint Actor-scene context Relation modeling based on Visual Semantics (JARViS), which effectively consolidates cross-modal action semantics distributed globally across spatial and temporal dimensions using Transformer attention. JARViS employs a person detector to produce densely sampled actor features from a keyframe. Concurrently, it uses a video backbone to create spatio-temporal scene features from a video clip. Finally, the fine-grained interactions between actors and scenes are modeled through a Unified Action-Scene Context Transformer to directly output the final set of actions in parallel. Our experimental results demonstrate that JARViS outperforms existing methods by significant margins and achieves state-of-the-art performance on three popular VAD datasets, including AVA, UCF101-24, and JHMDB51-21.
ISSN:0925-2312
DOI:10.1016/j.neucom.2024.128616