Loading…
Calculation of total efficiencies of extended samples for HPGe detectors
Calculation of coincidence summing correction factors in gamma-ray spectrometry can be carried out by making use of full-energy-peak and total efficiencies for a given sample geometry and detector setup. In the case of extended samples, the contribution of gamma-rays that scatter in the sample itsel...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2005-12, Vol.555 (1), p.251-254 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Calculation of coincidence summing correction factors in gamma-ray spectrometry can be carried out by making use of full-energy-peak and total efficiencies for a given sample geometry and detector setup. In the case of extended samples, the contribution of gamma-rays that scatter in the sample itself to the total efficiency needs to be taken into account. A method is described for calculating this contribution based on calibration measurements with point sources positioned on the detector housing. The approach is aimed at environmental gamma-ray spectrometry analysis of cylindrical samples on p-type HPGe detectors and is verified against full Monte Carlo calculations of total efficiencies with the GEANT code. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2005.08.101 |