Loading…
Synchrotron X-ray tomography for 3D chemical diffusion measurement of a flame retardant in polystyrene
In an on-going tomographic project, material properties of industrial polymer blends are being studied. This project uses 3D chemical analysis techniques to look at a polymer additive problem called blooming, related to the theory of aging and diffusion in glassy materials. The 3D images are acquire...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2007-11, Vol.582 (1), p.202-204 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In an on-going tomographic project, material properties of industrial polymer blends are being studied. This project uses 3D chemical analysis techniques to look at a polymer additive problem called blooming, related to the theory of aging and diffusion in glassy materials. The 3D images are acquired with synchrotron X-ray tomography because of its rapidity, good spatial resolution, large field-of-view, and elemental sensitivity. To investigate the chemical process of blooming, new procedures are developed to assess the flame retardant distribution as a function of annealing time in the sample. With the spatial chemical distribution we fit the concentrations to a diffusion equation to each time step in the annealing process. In this preliminary work, we study the dissolutions of a non-blooming flame retardant. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2007.08.108 |