Loading…

Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

We are developing a small animal PET scanner, “jPET-RD” to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally....

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2008, Vol.584 (1), p.212-218
Main Authors: Nishikido, Fumihiko, Tsuda, Tomoaki, Yoshida, Eiji, Inadama, Naoko, Shibuya, Kengo, Yamaya, Taiga, Kitamura, Keishi, Takahashi, Kei, Ohmura, Atsushi, Murayama, Hideo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We are developing a small animal PET scanner, “jPET-RD” to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32×32×4 crystal (4096 crystals, each 1.46 mm×1.46 mm×4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32×32×4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2007.10.001