Loading…
A gain control and stabilization technique for Silicon Photomultipliers in low-light-level applications around room temperature
An experimental setup in dark condition was established to investigate the temperature and bias voltage dependence of the Multi-Pixel Photon Counter (MPPC), one type of the SiPM developed by Hamamatsu. The dark current of an MPPC near room temperature at a given gain can be approximated by an expone...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2012-12, Vol.695, p.222-225 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experimental setup in dark condition was established to investigate the temperature and bias voltage dependence of the Multi-Pixel Photon Counter (MPPC), one type of the SiPM developed by Hamamatsu. The dark current of an MPPC near room temperature at a given gain can be approximated by an exponential function of temperature which is similar to the behavior of a negative temperature coefficient (NTC) thermistor. According to these facts, a gain control and stabilization circuit for MPPC is developed by using a programmable current sink with temperature compensation. Detailed design and performance analysis results of the circuit in the temperature range from 5.1°C to 33.3°C will be discussed in this paper. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2011.12.037 |