Loading…

A new guide concept for a homogenous neutron beam without direct line of sight

Neutron guide tubes are used to transport neutrons efficiently from the source to distant instruments. Ballistic neutron guides, which have an expanding section in the beginning and a contracting section in the end, reduce the total number of reflections and improve transport efficiency in long guid...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.777, p.6-14
Main Authors: Cussen, Leo D., Krist, Thomas, Lieutenant, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neutron guide tubes are used to transport neutrons efficiently from the source to distant instruments. Ballistic neutron guides, which have an expanding section in the beginning and a contracting section in the end, reduce the total number of reflections and improve transport efficiency in long guides. Long pulse spallation sources like the European Spallation Source require very long guides. Challenges in ballistic guide design are imposed by the need for small virtual sources and the prevention of direct line of sight to the source, because both tend to produce inhomogeneous beam distributions, and the latter reduces transmission for short wavelengths. This article describes a novel ballistic guide design based on elliptic profiles. It incorporates a carefully positioned and angled kink to avoid line of sight to the source and a narrow point to position a chopper. This design reduces the number of reflections in long guides and improves transmission, especially at short wavelengths, compared to other solutions avoiding a direct line of sight.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2014.12.003