Loading…
First demonstration of VUV-photon detection in liquid xenon with THGEM and GEM-based Liquid Hole Multipliers
The bubble-assisted Liquid Hole-Multiplier (LHM) is a recently-introduced detection concept for noble-liquid time projection chambers. In this “local dual-phase” detection element, a gas bubble is supported underneath a perforated electrode (e.g., Thick Gas Electron Multiplier – THGEM, or Gas Electr...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2017-02, Vol.845, p.218-221 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bubble-assisted Liquid Hole-Multiplier (LHM) is a recently-introduced detection concept for noble-liquid time projection chambers. In this “local dual-phase” detection element, a gas bubble is supported underneath a perforated electrode (e.g., Thick Gas Electron Multiplier – THGEM, or Gas Electron Multiplier – GEM). Electrons drifting through the holes induce large electroluminescence signals as they pass into the bubble. In this work we report on recent results of THGEM and GEM electrodes coated with cesium iodide and immersed in liquid xenon, allowing – for the first time – the detection of primary VUV scintillation photons in addition to ionization electrons. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2016.05.105 |