Loading…
High-precision compton imaging of 4.4 MeV prompt gamma-ray toward an on-line monitor for proton therapy
Proton therapy is a widely used and effective treatment for cancer. A high-dose concentration of proton beam reduces damage to normal tissues. However, it also requires a high accuracy of irradiation. PET is generally used to verify the proton range after irradiation, but, the distributions of posit...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-08, Vol.936, p.43-45 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proton therapy is a widely used and effective treatment for cancer. A high-dose concentration of proton beam reduces damage to normal tissues. However, it also requires a high accuracy of irradiation. PET is generally used to verify the proton range after irradiation, but, the distributions of positrons and the energy deposited by protons are not similar to each other. Recently, prompt gamma-ray imaging has attracted attention as a new, online imaging technique. In particular, 4.4 MeV gamma rays emitted from 12C* is one of the best probes to monitor the proton dose, however imaging techniques are far from established. We have developed a novel, 3-D position sensitive Compton camera based on Ce:GAGG scintillators coupled with multi-pixel photon counter (MPPC) arrays, thus making it optimized for imaging in the 1–10 MeV range. The angular resolution is 5 degrees (FWHM) at 4.4 MeV. We have established various methods to discriminate multiple-Compton and escape events, both of which can be critical backgrounds for precise imaging of prompt gamma rays. By irradiating a 70 MeV proton beam on the PMMA phantom, we demonstrated that 4.4 MeV gamma ray image is sharply concentrated on the Bragg peak, as was expected from the PHITS simulation. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2018.11.032 |