Loading…

Novel low resistivity glass: MRPC detectors for ultra high rate applications

Multigap Resistive Plate Chambers (MRPCs) are often used as time-of-flight (TOF) detectors for high-energy physics and nuclear experiments thanks to their excellent time accuracy. For the Compressed Baryonic Matter (CBM) TOF system, MRPCs are required to work at particle fluxes on the order of 1–10k...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-04, Vol.959, p.163483, Article 163483
Main Authors: Liu, Z., Beyer, R., Dreyer, J., Fan, X., Greifenhagen, R., Kim, D.W., Kotte, R., Garcia, A. Laso, Naumann, L., Römer, K., Stach, D., Estrada, C. Uribe, Williams, M.C.S., Zichichi, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multigap Resistive Plate Chambers (MRPCs) are often used as time-of-flight (TOF) detectors for high-energy physics and nuclear experiments thanks to their excellent time accuracy. For the Compressed Baryonic Matter (CBM) TOF system, MRPCs are required to work at particle fluxes on the order of 1–10kHz/cm2 for the outer region and 10–25kHz/cm2 for the central region. Better time resolution will allow particle identification with TOF techniques to be performed at higher momenta. From our previous studies, a time resolution of 25ps has been obtained with a 20-gap MRPC of 140μm gap size with enhanced rate capability. By using a new type of commercially available thin low-resistivity glass, further improvement MRPC rate capability is possible. In order to study the rate capability of the 10-gap MRPC built with this new low-resistivity glass, we have performed tests using the continuous electron beam at ELBE. This 10-gap MRPC, with 160μm gaps, reaches 97% efficiency at 19.2kV and a time resolution of 36ps at particle fluxes near 2kHz/cm2. At a flux of 100kHz/cm2, the efficiency is still above 95% and a time resolution of 50ps is obtained, which would fulfil the requirement of CBM TOF system.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2020.163483