Loading…

A cubic CeBr3 gamma-ray spectrometer suitable for the decommissioning of the Fukushima Daiichi Nuclear Power Station

In the decommissioning of the Fukushima Daiichi Nuclear Power Station (FDNPS), the retrieval of the nuclear fuel debris is a critical step, and the localization of these debris speeds up the decommissioning operation and prevents criticality. Our work focused on the passive gamma-ray analysis (PGA)...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-08, Vol.971, p.164118, Article 164118
Main Authors: Kaburagi, Masaaki, Shimazoe, Kenji, Otaka, Yutaka, Uenomachi, Mizuki, Kamada, Kei, Kim, Kyoung Jin, Yoshino, Masao, Shoji, Yasuhiro, Yoshikawa, Akira, Takahashi, Hiroyuki, Torii, Tatsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the decommissioning of the Fukushima Daiichi Nuclear Power Station (FDNPS), the retrieval of the nuclear fuel debris is a critical step, and the localization of these debris speeds up the decommissioning operation and prevents criticality. Our work focused on the passive gamma-ray analysis (PGA) of the nuclear fuel debris based on measuring gamma rays with an energy greater than 1 MeV. The PGA requires gamma-ray spectrometers to be used under the high dose rates in the FDNPS, then we fabricated a small cubic CeBr3 spectrometer with dimensions of 5 mm × 5 mm × 5 mm, which was coupled to a Hamamatsu R7600U-200 photomultiplier tube (PMT). We investigated the performance at dose rates of 4.4 to 750 mSv/h in a60Co field. The energy resolution of the full width at half maximum at 1333 keV ranged from 3.79% to 4.01%, with a standard deviation of 6.9%, which met the narrow gamma decay spectral lines between154Eu (1274 keV) and60Co (1333 keV). However, the spectra shifted to a higher energy level as the exposure dose rate increased, there was a 51% increase at the dose rates of 4.4 to 750 mSv/h. The spectral shifts were caused by the increase in the PMT gain due to the large direct current flows.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2020.164118