Loading…

Deep ensemble analysis for Imaging X-ray Polarimetry

We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-r...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.986, p.164740, Article 164740
Main Authors: Peirson, A.L., Romani, R.W., Marshall, H.L., Steiner, J.F., Baldini, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883
cites cdi_FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883
container_end_page
container_issue
container_start_page 164740
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 986
creator Peirson, A.L.
Romani, R.W.
Marshall, H.L.
Steiner, J.F.
Baldini, L.
description We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias–variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ∼45% increase in effective exposure times. For individual energies, our method produces 20%–30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1σ of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.
doi_str_mv 10.1016/j.nima.2020.164740
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nima_2020_164740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900220311372</els_id><sourcerecordid>S0168900220311372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFf_gKf-gdZM2iYpeJFV14UFPSh4C7PpdEnpx5IUof_elnp2LgPD-wzvw9g98BQ4yIcm7V2HqeBiPshc5fyCRaCVSMpCyUsWzSGdlJyLa3YTQsPnKZWOWP5MdI6pD9QdW4qxx3YKLsT14ON9hyfXn-LvxOMUfwwtetfR6KdbdlVjG-jub2_Y1-vL5_YtObzv9tunQ2IzzscEZVkRAJSglK4xh1KRQqSCBM-sFQBHpJxXAFpmYPNCaAkkJCDYItM62zCx_rV-CMFTbc5zA_STAW4Wb9OYxdss3mb1nqHHFaK52Y8jb4J11FuqnCc7mmpw_-G_OVNfhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep ensemble analysis for Imaging X-ray Polarimetry</title><source>ScienceDirect Freedom Collection</source><creator>Peirson, A.L. ; Romani, R.W. ; Marshall, H.L. ; Steiner, J.F. ; Baldini, L.</creator><creatorcontrib>Peirson, A.L. ; Romani, R.W. ; Marshall, H.L. ; Steiner, J.F. ; Baldini, L.</creatorcontrib><description>We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias–variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ∼45% increase in effective exposure times. For individual energies, our method produces 20%–30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1σ of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2020.164740</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep learning ; Gas pixel detector ; IXPE ; Machine learning ; Polarization ; X-ray polarimeter</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.986, p.164740, Article 164740</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883</citedby><cites>FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883</cites><orcidid>0000-0001-6292-1911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peirson, A.L.</creatorcontrib><creatorcontrib>Romani, R.W.</creatorcontrib><creatorcontrib>Marshall, H.L.</creatorcontrib><creatorcontrib>Steiner, J.F.</creatorcontrib><creatorcontrib>Baldini, L.</creatorcontrib><title>Deep ensemble analysis for Imaging X-ray Polarimetry</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias–variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ∼45% increase in effective exposure times. For individual energies, our method produces 20%–30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1σ of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.</description><subject>Deep learning</subject><subject>Gas pixel detector</subject><subject>IXPE</subject><subject>Machine learning</subject><subject>Polarization</subject><subject>X-ray polarimeter</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFf_gKf-gdZM2iYpeJFV14UFPSh4C7PpdEnpx5IUof_elnp2LgPD-wzvw9g98BQ4yIcm7V2HqeBiPshc5fyCRaCVSMpCyUsWzSGdlJyLa3YTQsPnKZWOWP5MdI6pD9QdW4qxx3YKLsT14ON9hyfXn-LvxOMUfwwtetfR6KdbdlVjG-jub2_Y1-vL5_YtObzv9tunQ2IzzscEZVkRAJSglK4xh1KRQqSCBM-sFQBHpJxXAFpmYPNCaAkkJCDYItM62zCx_rV-CMFTbc5zA_STAW4Wb9OYxdss3mb1nqHHFaK52Y8jb4J11FuqnCc7mmpw_-G_OVNfhw</recordid><startdate>20210111</startdate><enddate>20210111</enddate><creator>Peirson, A.L.</creator><creator>Romani, R.W.</creator><creator>Marshall, H.L.</creator><creator>Steiner, J.F.</creator><creator>Baldini, L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6292-1911</orcidid></search><sort><creationdate>20210111</creationdate><title>Deep ensemble analysis for Imaging X-ray Polarimetry</title><author>Peirson, A.L. ; Romani, R.W. ; Marshall, H.L. ; Steiner, J.F. ; Baldini, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Gas pixel detector</topic><topic>IXPE</topic><topic>Machine learning</topic><topic>Polarization</topic><topic>X-ray polarimeter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peirson, A.L.</creatorcontrib><creatorcontrib>Romani, R.W.</creatorcontrib><creatorcontrib>Marshall, H.L.</creatorcontrib><creatorcontrib>Steiner, J.F.</creatorcontrib><creatorcontrib>Baldini, L.</creatorcontrib><collection>CrossRef</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peirson, A.L.</au><au>Romani, R.W.</au><au>Marshall, H.L.</au><au>Steiner, J.F.</au><au>Baldini, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep ensemble analysis for Imaging X-ray Polarimetry</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2021-01-11</date><risdate>2021</risdate><volume>986</volume><spage>164740</spage><pages>164740-</pages><artnum>164740</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias–variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ∼45% increase in effective exposure times. For individual energies, our method produces 20%–30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1σ of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2020.164740</doi><orcidid>https://orcid.org/0000-0001-6292-1911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.986, p.164740, Article 164740
issn 0168-9002
1872-9576
language eng
recordid cdi_crossref_primary_10_1016_j_nima_2020_164740
source ScienceDirect Freedom Collection
subjects Deep learning
Gas pixel detector
IXPE
Machine learning
Polarization
X-ray polarimeter
title Deep ensemble analysis for Imaging X-ray Polarimetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20ensemble%20analysis%20for%20Imaging%20X-ray%20Polarimetry&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Peirson,%20A.L.&rft.date=2021-01-11&rft.volume=986&rft.spage=164740&rft.pages=164740-&rft.artnum=164740&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2020.164740&rft_dat=%3Celsevier_cross%3ES0168900220311372%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-a69de11191778fa4197e7aae5e203cc211bae40d118631c452861e261a1c53883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true