Loading…

1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study

Laser wakefield acceleration (LWFA) offers a promising compact solution for the production of high and very high energy electron (VHEE) beams, which have an ultrashort pulse duration with a high instantaneous dose rate and small source size. These unique properties are of radiobiological as well as...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.987, p.164841, Article 164841
Main Authors: Polanek, R., Hafz, Nasr A.M., Lécz, Zs, Papp, D., Kamperidis, C., Brunner, Sz, Szabó, E.R., Tőkés, T., Hideghéty, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3
cites cdi_FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3
container_end_page
container_issue
container_start_page 164841
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 987
creator Polanek, R.
Hafz, Nasr A.M.
Lécz, Zs
Papp, D.
Kamperidis, C.
Brunner, Sz
Szabó, E.R.
Tőkés, T.
Hideghéty, K.
description Laser wakefield acceleration (LWFA) offers a promising compact solution for the production of high and very high energy electron (VHEE) beams, which have an ultrashort pulse duration with a high instantaneous dose rate and small source size. These unique properties are of radiobiological as well as clinical interest. In this paper we focus on the potential application of high repetition rate LWFA electron beams for radiobiology and radiotherapy. On the basis of particle-in-cell (PIC) and Monte Carlo simulations we propose that, using a commercially available 1kHz laser system one can generate electron beams with 35.7MeV mean energy and 3pC electron bunch charge at 1kHz repetition rate to deliver a dose rate of 18Gy/min, which could be extremely useful for real radiotherapy applications. Thanks to the high repetition rate, dose delivery can be performed with high precision making this system a potential alternative to conventional clinical electron accelerators.
doi_str_mv 10.1016/j.nima.2020.164841
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nima_2020_164841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900220312389</els_id><sourcerecordid>S0168900220312389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVa-QIr_4iSITRXxU6kIFrC2_DMRLmlc2SlSWXEHbshJcFXWzGZGo_eenj6ELimZUULl1Wo2-LWeMcLyQ4pa0CM0oXXFiqas5DGaZFFdNISwU3SW0orkaap6goDi94dP3OsEEWtroYeoR3A4H3aMYcAG9Bp3oJM3PeAuRBy182F8y8LNDm8TpGs8x8-L9ufr-zEMI-BWxz5gkzMdTuPW7c7RSaf7BBd_e4pe725f2odi-XS_aOfLwnIhxkKCrahxQBmvDauMk3VlQRLHnaFcNKYTUJal4NoyRyuQnOtSNKKxnFppOj5F7JBrY0gpQqc2MXOJO0WJ2oNSK7UHpfag1AFUNt0cTJCbfXiIKlkPgwXnY2agXPD_2X8BXeZyyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Polanek, R. ; Hafz, Nasr A.M. ; Lécz, Zs ; Papp, D. ; Kamperidis, C. ; Brunner, Sz ; Szabó, E.R. ; Tőkés, T. ; Hideghéty, K.</creator><creatorcontrib>Polanek, R. ; Hafz, Nasr A.M. ; Lécz, Zs ; Papp, D. ; Kamperidis, C. ; Brunner, Sz ; Szabó, E.R. ; Tőkés, T. ; Hideghéty, K.</creatorcontrib><description>Laser wakefield acceleration (LWFA) offers a promising compact solution for the production of high and very high energy electron (VHEE) beams, which have an ultrashort pulse duration with a high instantaneous dose rate and small source size. These unique properties are of radiobiological as well as clinical interest. In this paper we focus on the potential application of high repetition rate LWFA electron beams for radiobiology and radiotherapy. On the basis of particle-in-cell (PIC) and Monte Carlo simulations we propose that, using a commercially available 1kHz laser system one can generate electron beams with 35.7MeV mean energy and 3pC electron bunch charge at 1kHz repetition rate to deliver a dose rate of 18Gy/min, which could be extremely useful for real radiotherapy applications. Thanks to the high repetition rate, dose delivery can be performed with high precision making this system a potential alternative to conventional clinical electron accelerators.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2020.164841</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electron radiotherapy ; LWFA acceleration</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.987, p.164841, Article 164841</ispartof><rights>2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3</citedby><cites>FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3</cites><orcidid>0000-0001-7080-2365 ; 0000-0003-3645-8331 ; 0000-0002-0360-7671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Polanek, R.</creatorcontrib><creatorcontrib>Hafz, Nasr A.M.</creatorcontrib><creatorcontrib>Lécz, Zs</creatorcontrib><creatorcontrib>Papp, D.</creatorcontrib><creatorcontrib>Kamperidis, C.</creatorcontrib><creatorcontrib>Brunner, Sz</creatorcontrib><creatorcontrib>Szabó, E.R.</creatorcontrib><creatorcontrib>Tőkés, T.</creatorcontrib><creatorcontrib>Hideghéty, K.</creatorcontrib><title>1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Laser wakefield acceleration (LWFA) offers a promising compact solution for the production of high and very high energy electron (VHEE) beams, which have an ultrashort pulse duration with a high instantaneous dose rate and small source size. These unique properties are of radiobiological as well as clinical interest. In this paper we focus on the potential application of high repetition rate LWFA electron beams for radiobiology and radiotherapy. On the basis of particle-in-cell (PIC) and Monte Carlo simulations we propose that, using a commercially available 1kHz laser system one can generate electron beams with 35.7MeV mean energy and 3pC electron bunch charge at 1kHz repetition rate to deliver a dose rate of 18Gy/min, which could be extremely useful for real radiotherapy applications. Thanks to the high repetition rate, dose delivery can be performed with high precision making this system a potential alternative to conventional clinical electron accelerators.</description><subject>Electron radiotherapy</subject><subject>LWFA acceleration</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVa-QIr_4iSITRXxU6kIFrC2_DMRLmlc2SlSWXEHbshJcFXWzGZGo_eenj6ELimZUULl1Wo2-LWeMcLyQ4pa0CM0oXXFiqas5DGaZFFdNISwU3SW0orkaap6goDi94dP3OsEEWtroYeoR3A4H3aMYcAG9Bp3oJM3PeAuRBy182F8y8LNDm8TpGs8x8-L9ufr-zEMI-BWxz5gkzMdTuPW7c7RSaf7BBd_e4pe725f2odi-XS_aOfLwnIhxkKCrahxQBmvDauMk3VlQRLHnaFcNKYTUJal4NoyRyuQnOtSNKKxnFppOj5F7JBrY0gpQqc2MXOJO0WJ2oNSK7UHpfag1AFUNt0cTJCbfXiIKlkPgwXnY2agXPD_2X8BXeZyyQ</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Polanek, R.</creator><creator>Hafz, Nasr A.M.</creator><creator>Lécz, Zs</creator><creator>Papp, D.</creator><creator>Kamperidis, C.</creator><creator>Brunner, Sz</creator><creator>Szabó, E.R.</creator><creator>Tőkés, T.</creator><creator>Hideghéty, K.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7080-2365</orcidid><orcidid>https://orcid.org/0000-0003-3645-8331</orcidid><orcidid>https://orcid.org/0000-0002-0360-7671</orcidid></search><sort><creationdate>20210121</creationdate><title>1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study</title><author>Polanek, R. ; Hafz, Nasr A.M. ; Lécz, Zs ; Papp, D. ; Kamperidis, C. ; Brunner, Sz ; Szabó, E.R. ; Tőkés, T. ; Hideghéty, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electron radiotherapy</topic><topic>LWFA acceleration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polanek, R.</creatorcontrib><creatorcontrib>Hafz, Nasr A.M.</creatorcontrib><creatorcontrib>Lécz, Zs</creatorcontrib><creatorcontrib>Papp, D.</creatorcontrib><creatorcontrib>Kamperidis, C.</creatorcontrib><creatorcontrib>Brunner, Sz</creatorcontrib><creatorcontrib>Szabó, E.R.</creatorcontrib><creatorcontrib>Tőkés, T.</creatorcontrib><creatorcontrib>Hideghéty, K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polanek, R.</au><au>Hafz, Nasr A.M.</au><au>Lécz, Zs</au><au>Papp, D.</au><au>Kamperidis, C.</au><au>Brunner, Sz</au><au>Szabó, E.R.</au><au>Tőkés, T.</au><au>Hideghéty, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2021-01-21</date><risdate>2021</risdate><volume>987</volume><spage>164841</spage><pages>164841-</pages><artnum>164841</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Laser wakefield acceleration (LWFA) offers a promising compact solution for the production of high and very high energy electron (VHEE) beams, which have an ultrashort pulse duration with a high instantaneous dose rate and small source size. These unique properties are of radiobiological as well as clinical interest. In this paper we focus on the potential application of high repetition rate LWFA electron beams for radiobiology and radiotherapy. On the basis of particle-in-cell (PIC) and Monte Carlo simulations we propose that, using a commercially available 1kHz laser system one can generate electron beams with 35.7MeV mean energy and 3pC electron bunch charge at 1kHz repetition rate to deliver a dose rate of 18Gy/min, which could be extremely useful for real radiotherapy applications. Thanks to the high repetition rate, dose delivery can be performed with high precision making this system a potential alternative to conventional clinical electron accelerators.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2020.164841</doi><orcidid>https://orcid.org/0000-0001-7080-2365</orcidid><orcidid>https://orcid.org/0000-0003-3645-8331</orcidid><orcidid>https://orcid.org/0000-0002-0360-7671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2021-01, Vol.987, p.164841, Article 164841
issn 0168-9002
1872-9576
language eng
recordid cdi_crossref_primary_10_1016_j_nima_2020_164841
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Electron radiotherapy
LWFA acceleration
title 1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1%20kHz%20laser%20accelerated%20electron%20beam%20feasible%20for%20radiotherapy%20uses:%20A%20PIC%E2%80%93Monte%20Carlo%20based%20study&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Polanek,%20R.&rft.date=2021-01-21&rft.volume=987&rft.spage=164841&rft.pages=164841-&rft.artnum=164841&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2020.164841&rft_dat=%3Celsevier_cross%3ES0168900220312389%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6ec71bde1238b27bd687ce60d3db1349bf4e55543ac2d17e633a54949c31c6bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true