Loading…
Gamma intensities for the β-decay of 97Zr
To determine the neutron flux in activation experiments, a commonly used monitor is zirconium and in particular the stable isotopes 94,96Zr. 96Zr is very sensitive to epithermal neutrons. Despite its widespread application, most gamma intensities of the radioactive neutron capture product, 97Zr, yie...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2023-03, Vol.1048, p.167891, Article 167891 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine the neutron flux in activation experiments, a commonly used monitor is zirconium and in particular the stable isotopes 94,96Zr. 96Zr is very sensitive to epithermal neutrons. Despite its widespread application, most gamma intensities of the radioactive neutron capture product, 97Zr, yield large uncertainties. With the help of a new γ spectroscopy setup and GEANT simulations, we succeeded in determining a new set of γ-ray intensities with significantly reduced uncertainties. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2022.167891 |