Loading…

High resolution Li depth profiling of solid state Li ion battery by TERD technique with high energy light ions

Li depth profiles in Au/Si/LiPON/LCO/Au (LCO = LiCoO2, LiPON = Li3.3PO3.8N0.2) thin films battery under charging condition, prepared on self-supporting Al substrate, have been in situ measured by means of transmission elastic recoil detection (TERD) and Rutherford backscattering spectroscopy (RBS) t...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2018-07, Vol.426, p.30-33
Main Authors: Morita, K., Tsuchiya, B., Ohnishi, J., Yamamoto, T., Iriyama, Y., Tsuchida, H., Majima, T., Suzuki, K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Li depth profiles in Au/Si/LiPON/LCO/Au (LCO = LiCoO2, LiPON = Li3.3PO3.8N0.2) thin films battery under charging condition, prepared on self-supporting Al substrate, have been in situ measured by means of transmission elastic recoil detection (TERD) and Rutherford backscattering spectroscopy (RBS) techniques not only with 5.4 MeV He2+ ion beam without absorber, but also 9 MeV O4+ ion beam with Al absorber. In experiments with 5.4 MeV He2+, well-resolved step-wise TERD spectra have been observed, from which thickness and Li composition of constituent films of the battery are directly estimated. The Li transport from LCO to Si films through LiPON as well as return-back of Li from Si to LCO films and Li leakage into the Al substrate out of the battery system by over-charging under charging condition have been observed in the experiments both 5.4 MeV He2+ and 9 MeV O4+. The latter result indicates that these techniques are applicable to testing degradation of the battery performance by repetition of charging and discharging. Both results are compared in details with each other.
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2018.04.003