Loading…

Antibacterial effect of a fluoride-containing ZnO/CuO nanocomposite

Dental materials that are antimicrobial and acid-resistant can inhibit bacterial colonization and demineralization, thereby preventing caries. Zinc and copper are well-known for their antibacterial effect, as is nanostructured ZnO–CuO composite. Minerals such as fluorine and calcium, can remineraliz...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2019-11, Vol.458, p.184-188
Main Authors: Matsuda, Yasuhiro, Okuyama, Katsushi, Yamamoto, Hiroko, Fujita, Mari, Abe, Shigeaki, Sato, Takahiro, Yamada, Naoto, Koka, Masashi, Sano, Hidehiko, Hayashi, Mikako, Sidhu, Sharanbir K., Saito, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dental materials that are antimicrobial and acid-resistant can inhibit bacterial colonization and demineralization, thereby preventing caries. Zinc and copper are well-known for their antibacterial effect, as is nanostructured ZnO–CuO composite. Minerals such as fluorine and calcium, can remineralize and demineralize teeth. Therefore, we developed novel fluoride-containing ZnO–CuO (ZCF) nanocomposites; to the best of our knowledge, these are the first nanocomposites of this kind. The fluoride concentrations and antibacterial effects of the ZCF nanocomposites were evaluated. Nanocomposites comprising zinc and copper (ZC), and zinc, copper, and fluorine (ZCF), were prepared by a simple one-step homogeneous coprecipitation method at a low temperature (80 °C), without the use of organic solvent or surfactant. The structure and composition of the ZC and ZCF nanocomposites were examined by scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS). Quantitative analysis of the mass concentration was performed by using ZAF correction methods. The fluorine content in nanocomposites was evaluated by using proton-induced gamma emission (PIGE) at the Takasaki Advanced Radiation Research Institute in Japan. By using 96-well microtiter plates, we analyzed the antibiotic susceptibility of ZC, ZCF, and the control buffer (phosphate-buffered saline) with Streptococcus mutans (ATCC 25175). The SEM images showed that ZC and ZCF nanocomposites were composed of 3D flower-like microstructures with diameters of approximately 1 μm. Environmental SEM-EDS analysis revealed that ZC contained 43.2% Cu, 55.1% Zn, 2.2% F, and 0.1% Cl, whereas ZCF contained 47.5% Cu, 40.5% Zn, 6.7% F, and 5.9% Cl. Analysis by PIGE showed that ZCF nanocomposite contained 2553.6 ± 199.2 ppm fluorine, whereas no fluoride was detected in ZC. The control buffer enabled bacterial growth to 4 × 107 ± 9 × 106 CFU/mL, whereas ZC allowed growth of 12 ± 8 CFU/mL, and ZCF showed no bacterial growth. Thus, we developed novel fluoride-containing ZnO–CuO nanocomposites, which exhibited antibacterial effects and have the potential for remineralization, thereby demonstrating their potential as multifunctional dental materials.
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2019.06.039