Loading…
Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment
In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system...
Saved in:
Published in: | Nonlinear analysis: real world applications 2022-10, Vol.67, p.103615, Article 103615 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3 |
container_end_page | |
container_issue | |
container_start_page | 103615 |
container_title | Nonlinear analysis: real world applications |
container_volume | 67 |
creator | Tadmon, Calvin Tsanou, Berge Feukouo, Arnaud Fossi |
description | In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results. |
doi_str_mv | 10.1016/j.nonrwa.2022.103615 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nonrwa_2022_103615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812182200061X</els_id><sourcerecordid>S146812182200061X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxY-ACmx879Bqir-pEpsYG1N7DF1ldiVnbQqK-7ADTkJRmHNakZv9N48fYRcs3TBUlbebhfWWX-ABU85j1JWsuKEzFhd1UlRseY07nlZJ4yz-pxchLBNU1axjM2IWe4N2O_Pr83Yg6XG6m5E-wEUd0ZhbyTtncKOHsywocpoPQbj7A2NDzsnoaPxCEcKVtGwg8FEZeN6944W3Rgo2r3xzvZoh0typqELePU35-Tt4f519ZSsXx6fV8t1IrO0HBKUOVRtk9dYcJW1oLFVwNsyygjAG12gUoojVLqpMl02ui7bVvO8ybnWCrM5yadc6V0IHrXYedODPwqWil9cYismXOIXl5hwRdvdZMPYbW_QiyANWonKeJSDUM78H_ADrv17Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><source>ScienceDirect Freedom Collection</source><creator>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</creator><creatorcontrib>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</creatorcontrib><description>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2022.103615</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Avian influenza ; Reaction–diffusion systems ; SI-SEIS-C model ; Stability</subject><ispartof>Nonlinear analysis: real world applications, 2022-10, Vol.67, p.103615, Article 103615</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</citedby><cites>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</cites><orcidid>0000-0001-8031-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tadmon, Calvin</creatorcontrib><creatorcontrib>Tsanou, Berge</creatorcontrib><creatorcontrib>Feukouo, Arnaud Fossi</creatorcontrib><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><title>Nonlinear analysis: real world applications</title><description>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</description><subject>Avian influenza</subject><subject>Reaction–diffusion systems</subject><subject>SI-SEIS-C model</subject><subject>Stability</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxY-ACmx879Bqir-pEpsYG1N7DF1ldiVnbQqK-7ADTkJRmHNakZv9N48fYRcs3TBUlbebhfWWX-ABU85j1JWsuKEzFhd1UlRseY07nlZJ4yz-pxchLBNU1axjM2IWe4N2O_Pr83Yg6XG6m5E-wEUd0ZhbyTtncKOHsywocpoPQbj7A2NDzsnoaPxCEcKVtGwg8FEZeN6944W3Rgo2r3xzvZoh0typqELePU35-Tt4f519ZSsXx6fV8t1IrO0HBKUOVRtk9dYcJW1oLFVwNsyygjAG12gUoojVLqpMl02ui7bVvO8ybnWCrM5yadc6V0IHrXYedODPwqWil9cYismXOIXl5hwRdvdZMPYbW_QiyANWonKeJSDUM78H_ADrv17Yw</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Tadmon, Calvin</creator><creator>Tsanou, Berge</creator><creator>Feukouo, Arnaud Fossi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8031-1017</orcidid></search><sort><creationdate>202210</creationdate><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><author>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Avian influenza</topic><topic>Reaction–diffusion systems</topic><topic>SI-SEIS-C model</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadmon, Calvin</creatorcontrib><creatorcontrib>Tsanou, Berge</creatorcontrib><creatorcontrib>Feukouo, Arnaud Fossi</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadmon, Calvin</au><au>Tsanou, Berge</au><au>Feukouo, Arnaud Fossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2022-10</date><risdate>2022</risdate><volume>67</volume><spage>103615</spage><pages>103615-</pages><artnum>103615</artnum><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2022.103615</doi><orcidid>https://orcid.org/0000-0001-8031-1017</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2022-10, Vol.67, p.103615, Article 103615 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_nonrwa_2022_103615 |
source | ScienceDirect Freedom Collection |
subjects | Avian influenza Reaction–diffusion systems SI-SEIS-C model Stability |
title | Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avian%E2%80%93human%20influenza%20epidemic%20model%20with%20diffusion,%20nonlocal%20delay%20and%20spatial%20homogeneous%20environment&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Tadmon,%20Calvin&rft.date=2022-10&rft.volume=67&rft.spage=103615&rft.pages=103615-&rft.artnum=103615&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2022.103615&rft_dat=%3Celsevier_cross%3ES146812182200061X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |