Loading…

Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment

In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications 2022-10, Vol.67, p.103615, Article 103615
Main Authors: Tadmon, Calvin, Tsanou, Berge, Feukouo, Arnaud Fossi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3
cites cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3
container_end_page
container_issue
container_start_page 103615
container_title Nonlinear analysis: real world applications
container_volume 67
creator Tadmon, Calvin
Tsanou, Berge
Feukouo, Arnaud Fossi
description In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.
doi_str_mv 10.1016/j.nonrwa.2022.103615
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_nonrwa_2022_103615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812182200061X</els_id><sourcerecordid>S146812182200061X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxY-ACmx879Bqir-pEpsYG1N7DF1ldiVnbQqK-7ADTkJRmHNakZv9N48fYRcs3TBUlbebhfWWX-ABU85j1JWsuKEzFhd1UlRseY07nlZJ4yz-pxchLBNU1axjM2IWe4N2O_Pr83Yg6XG6m5E-wEUd0ZhbyTtncKOHsywocpoPQbj7A2NDzsnoaPxCEcKVtGwg8FEZeN6944W3Rgo2r3xzvZoh0typqELePU35-Tt4f519ZSsXx6fV8t1IrO0HBKUOVRtk9dYcJW1oLFVwNsyygjAG12gUoojVLqpMl02ui7bVvO8ybnWCrM5yadc6V0IHrXYedODPwqWil9cYismXOIXl5hwRdvdZMPYbW_QiyANWonKeJSDUM78H_ADrv17Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><source>ScienceDirect Freedom Collection</source><creator>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</creator><creatorcontrib>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</creatorcontrib><description>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2022.103615</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Avian influenza ; Reaction–diffusion systems ; SI-SEIS-C model ; Stability</subject><ispartof>Nonlinear analysis: real world applications, 2022-10, Vol.67, p.103615, Article 103615</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</citedby><cites>FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</cites><orcidid>0000-0001-8031-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tadmon, Calvin</creatorcontrib><creatorcontrib>Tsanou, Berge</creatorcontrib><creatorcontrib>Feukouo, Arnaud Fossi</creatorcontrib><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><title>Nonlinear analysis: real world applications</title><description>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</description><subject>Avian influenza</subject><subject>Reaction–diffusion systems</subject><subject>SI-SEIS-C model</subject><subject>Stability</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxY-ACmx879Bqir-pEpsYG1N7DF1ldiVnbQqK-7ADTkJRmHNakZv9N48fYRcs3TBUlbebhfWWX-ABU85j1JWsuKEzFhd1UlRseY07nlZJ4yz-pxchLBNU1axjM2IWe4N2O_Pr83Yg6XG6m5E-wEUd0ZhbyTtncKOHsywocpoPQbj7A2NDzsnoaPxCEcKVtGwg8FEZeN6944W3Rgo2r3xzvZoh0typqELePU35-Tt4f519ZSsXx6fV8t1IrO0HBKUOVRtk9dYcJW1oLFVwNsyygjAG12gUoojVLqpMl02ui7bVvO8ybnWCrM5yadc6V0IHrXYedODPwqWil9cYismXOIXl5hwRdvdZMPYbW_QiyANWonKeJSDUM78H_ADrv17Yw</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Tadmon, Calvin</creator><creator>Tsanou, Berge</creator><creator>Feukouo, Arnaud Fossi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8031-1017</orcidid></search><sort><creationdate>202210</creationdate><title>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</title><author>Tadmon, Calvin ; Tsanou, Berge ; Feukouo, Arnaud Fossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Avian influenza</topic><topic>Reaction–diffusion systems</topic><topic>SI-SEIS-C model</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadmon, Calvin</creatorcontrib><creatorcontrib>Tsanou, Berge</creatorcontrib><creatorcontrib>Feukouo, Arnaud Fossi</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadmon, Calvin</au><au>Tsanou, Berge</au><au>Feukouo, Arnaud Fossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2022-10</date><risdate>2022</risdate><volume>67</volume><spage>103615</spage><pages>103615-</pages><artnum>103615</artnum><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2022.103615</doi><orcidid>https://orcid.org/0000-0001-8031-1017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2022-10, Vol.67, p.103615, Article 103615
issn 1468-1218
1878-5719
language eng
recordid cdi_crossref_primary_10_1016_j_nonrwa_2022_103615
source ScienceDirect Freedom Collection
subjects Avian influenza
Reaction–diffusion systems
SI-SEIS-C model
Stability
title Avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avian%E2%80%93human%20influenza%20epidemic%20model%20with%20diffusion,%20nonlocal%20delay%20and%20spatial%20homogeneous%20environment&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Tadmon,%20Calvin&rft.date=2022-10&rft.volume=67&rft.spage=103615&rft.pages=103615-&rft.artnum=103615&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2022.103615&rft_dat=%3Celsevier_cross%3ES146812182200061X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-ec4a7b948e52d3bafebda2b6c4aeaa29f5eddd2ea7f973f69f86bbf24942ffde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true