Loading…
Hydrodynamic Fluctuations in Relativistic Heavy-Ion Collisions
We present a novel approach to the treatment of thermal fluctuations in the (3+1)-D viscous hydrodynamic simulation MUSIC. The phenomenological impact of thermal fluctuations on hadronic observables is investigated using the IP-Glasma + hydrodynamics + hadronic cascade hybrid approach. The anisotrop...
Saved in:
Published in: | Nuclear physics. A 2019-02, Vol.982, p.319-322 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel approach to the treatment of thermal fluctuations in the (3+1)-D viscous hydrodynamic simulation MUSIC. The phenomenological impact of thermal fluctuations on hadronic observables is investigated using the IP-Glasma + hydrodynamics + hadronic cascade hybrid approach. The anisotropic flow observed in heavy-ion collision experiments is mostly attributed to the hydrodynamic response to the event-by-event collision geometry and to the sub-nucleon quantum fluctuations. However, hydrodynamic fluctuations are present during the dynamical evolution of the Quark Gluon Plasma (QGP) and are quantified by the fluctuation-dissipation theorem. They can leave their imprint on final-state observables. By analyzing the thermal noise mode-by-mode, we provide a consistent scheme of treating these fluctuations as the source terms for hydrodynamic fields. These source terms are then evolved together with hydrodynamic equations of motion. Such a treatment captures the non-perturbative nature of the evolution for these thermal fluctuations. |
---|---|
ISSN: | 0375-9474 |
DOI: | 10.1016/j.nuclphysa.2018.10.061 |