Loading…

Hydrodynamic Fluctuations in Relativistic Heavy-Ion Collisions

We present a novel approach to the treatment of thermal fluctuations in the (3+1)-D viscous hydrodynamic simulation MUSIC. The phenomenological impact of thermal fluctuations on hadronic observables is investigated using the IP-Glasma + hydrodynamics + hadronic cascade hybrid approach. The anisotrop...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. A 2019-02, Vol.982, p.319-322
Main Authors: Singh, Mayank, Shen, Chun, McDonald, Scott, Jeon, Sangyong, Gale, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel approach to the treatment of thermal fluctuations in the (3+1)-D viscous hydrodynamic simulation MUSIC. The phenomenological impact of thermal fluctuations on hadronic observables is investigated using the IP-Glasma + hydrodynamics + hadronic cascade hybrid approach. The anisotropic flow observed in heavy-ion collision experiments is mostly attributed to the hydrodynamic response to the event-by-event collision geometry and to the sub-nucleon quantum fluctuations. However, hydrodynamic fluctuations are present during the dynamical evolution of the Quark Gluon Plasma (QGP) and are quantified by the fluctuation-dissipation theorem. They can leave their imprint on final-state observables. By analyzing the thermal noise mode-by-mode, we provide a consistent scheme of treating these fluctuations as the source terms for hydrodynamic fields. These source terms are then evolved together with hydrodynamic equations of motion. Such a treatment captures the non-perturbative nature of the evolution for these thermal fluctuations.
ISSN:0375-9474
DOI:10.1016/j.nuclphysa.2018.10.061