Loading…

On the Starobinsky model of inflation from supergravity

We discuss how the higher-derivative Starobinsky model of inflation originates from N=1 supergravity. It is known that, in the old-minimal supergravity description written by employing a chiral compensator in the superconformal framework, the Starobinsky model is equivalent to a no-scale model with...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. B 2013-11, Vol.876 (1), p.187-200
Main Authors: Farakos, F., Kehagias, A., Riotto, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We discuss how the higher-derivative Starobinsky model of inflation originates from N=1 supergravity. It is known that, in the old-minimal supergravity description written by employing a chiral compensator in the superconformal framework, the Starobinsky model is equivalent to a no-scale model with F-term potential. We show that the Starobinsky model can also be originated within the so-called new-minimal supergravity, where a linear compensator superfield is employed. In this formulation, the Starobinsky model is equivalent to standard supergravity coupled to a massive vector multiplet whose lowest scalar component plays the role of the inflaton and the vacuum energy is provided by a D-term potential. We also point out that higher-order corrections to the supergravity Lagrangian represent a threat to the Starobinsky model as they can destroy the flatness of the inflaton potential in its scalar field equivalent description.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2013.08.005