Loading…
Recent results from Borexino and the first real time measure of solar pp neutrinos
The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos. Since the beginning of data taking, in May 2007,...
Saved in:
Published in: | Nuclear and particle physics proceedings 2016-04, Vol.273-275, p.1753-1759 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos.
Since the beginning of data taking, in May 2007, the unprecedented detector radio-purity made the performances of the detector unique: a milestone has been very recently achieved with the measurement of solar pp neutrino flux, providing the first direct observation in real time of the key fusion reaction powering the Sun.
In this contribution the most important Borexino achievements to the fields of solar, geo-neutrino and particle physics are reviewed and the future perspectives discussed, emphasizing in particular the unique possibility of Borexino to cover at the end of its program the entire solar neutrino spectrum and to exploit the possible existence of a fourth sterile neutrino (SOX project). |
---|---|
ISSN: | 2405-6014 2405-6022 |
DOI: | 10.1016/j.nuclphysbps.2015.09.282 |