Loading…

Method for Real-Time Hybrid Model Testing of ocean structures: Case study on horizontal mooring systems

This paper presents a method for Real-Time Hybrid Model testing (ReaTHM testing) of ocean structures. ReaTHM testing is an extension to traditional hydrodynamic model-scale testing, where the system under study is partitioned into physical and numerical substructures. The physical and numerical subs...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2019-01, Vol.172, p.46-58
Main Authors: Vilsen, S.A., Sauder, T., Sørensen, A.J., Føre, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method for Real-Time Hybrid Model testing (ReaTHM testing) of ocean structures. ReaTHM testing is an extension to traditional hydrodynamic model-scale testing, where the system under study is partitioned into physical and numerical substructures. The physical and numerical subsystems are connected in real-time through a control system. Based on experience with various ReaTHM tests, a general method for ReaTHM testing of ocean structures has been proposed. An experimental case study was carried out to illustrate the proposed method. The study was conducted in a state-of-the-art hydrodynamic laboratory, where a physical cylindrical buoy was placed in a still-water basin. Horizontal mooring loads from a numerical mooring system, which were modelled using the nonlinear finite element software RIFLEX were actuated onto the physical substructure. System performance was verified through comparison with a physical horizontal mooring system consisting of physical springs.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2018.10.042