Loading…

Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines

Accurate prediction of the propagation pressure (PP) in hybrid steel-CFRP pipe systems presents a substantial challenge due to intricate interactions and complex collapse failure modes. An efficient FE-based algorithm is programmed using ANSYS to numerically estimate the PP of hybrid steel-CFRP pipe...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2024-11, Vol.311, p.118808, Article 118808
Main Authors: Alrsai, Mahmoud, Alsahalen, Ala’, Karampour, Hassan, Alhawamdeh, Mohammad, Alajarmeh, Omar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c189t-43c187f74ecc0b47588d8355cc338df469278146ad8f9202b41b4abd4b9256923
container_end_page
container_issue
container_start_page 118808
container_title Ocean engineering
container_volume 311
creator Alrsai, Mahmoud
Alsahalen, Ala’
Karampour, Hassan
Alhawamdeh, Mohammad
Alajarmeh, Omar
description Accurate prediction of the propagation pressure (PP) in hybrid steel-CFRP pipe systems presents a substantial challenge due to intricate interactions and complex collapse failure modes. An efficient FE-based algorithm is programmed using ANSYS to numerically estimate the PP of hybrid steel-CFRP pipe, subjected to external pressure. This study employs a machine learning (ML) framework, addressing the inherent complexity with a three-phase approach: Parameter Design, Buckle Propagation Analysis, and ML Model Development. The dataset, encompassing about two thousand observations with four key features, undergoes k-fold cross-validation and min-max normalization for robust ML performance. Five ML models—Random Forest (RF), K-Nearest Neighbors (KNN), Genetic Programming (GP), Multi-layer Perceptron (MLP), and Support Vector Machine (SVM)—are developed and evaluated. The results revealed a significant influence of Ds/ts, a three-phase relationship with ts/tc, and a substantial decrease in PPh/PPs with increasing σys/σuc, predominantly exhibiting U-shaped or dog-bone failure modes in different scenarios. Proven that GP, KNN, and RF are the superior performers, ranking ahead of SVM with Gaussian Kernel (SVM-GK), MLP, and SVM with Linear Kernel (SVM-LK). Statistical metrics, Taylor Diagram analysis, and comparisons with FE results emphasize the effectiveness of GP, KNN, and RF. Additionally, normality tests and feature importance analysis provide nuanced insights. •Predicting PP in hybrid steel-CFRP pipes using FE and ML; model validated against prior experiments.•Failure modes identified; 3-phase ML framework with RF, KNN, GP, MLP, and SVM proposed for analysis.•GP, KNN, RF outperform SVM-GK, MLP, SVM-LK in PP prediction; feature importance also analyzed.•Combining ML with dimensional analysis enhances understanding of hybrid steel-CFRP pipe behavior.
doi_str_mv 10.1016/j.oceaneng.2024.118808
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_oceaneng_2024_118808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801824021462</els_id><sourcerecordid>S0029801824021462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-43c187f74ecc0b47588d8355cc338df469278146ad8f9202b41b4abd4b9256923</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhb0AiVK4AvIFEuzESZwdqKJQqRKIn7Xln0nqKnUi20XqFTg1LoU1q3l6o_c08yF0Q0lOCa1vt_moQTpwfV6QguWUck74GZoRUrQZJ5RfoMsQtoSQuiblDH2tXITeywgGd9bZCBgG2IGLWDo5HIINSRi8k3pjHeABpHfW9VhOkx-TibvR4yQn2ctoR5c0hLD3cBTG6h_POrw5KG8NfosAQ7ZYvr7gsFcBJJ7sBEOqDlfovJNDgOvfOUcfy4f3xVO2fn5cLe7Xmaa8jRkr02y6hoHWRLGm4tzwsqq0LktuOla3RcMpq6XhXZsgKEYVk8ow1RZVWpZzVJ96tR9D8NCJydud9AdBiThSFFvxR1EcKYoTxRS8OwUhXfdpwYugLTid3vSgozCj_a_iGyJPg84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines</title><source>ScienceDirect Journals</source><creator>Alrsai, Mahmoud ; Alsahalen, Ala’ ; Karampour, Hassan ; Alhawamdeh, Mohammad ; Alajarmeh, Omar</creator><creatorcontrib>Alrsai, Mahmoud ; Alsahalen, Ala’ ; Karampour, Hassan ; Alhawamdeh, Mohammad ; Alajarmeh, Omar</creatorcontrib><description>Accurate prediction of the propagation pressure (PP) in hybrid steel-CFRP pipe systems presents a substantial challenge due to intricate interactions and complex collapse failure modes. An efficient FE-based algorithm is programmed using ANSYS to numerically estimate the PP of hybrid steel-CFRP pipe, subjected to external pressure. This study employs a machine learning (ML) framework, addressing the inherent complexity with a three-phase approach: Parameter Design, Buckle Propagation Analysis, and ML Model Development. The dataset, encompassing about two thousand observations with four key features, undergoes k-fold cross-validation and min-max normalization for robust ML performance. Five ML models—Random Forest (RF), K-Nearest Neighbors (KNN), Genetic Programming (GP), Multi-layer Perceptron (MLP), and Support Vector Machine (SVM)—are developed and evaluated. The results revealed a significant influence of Ds/ts, a three-phase relationship with ts/tc, and a substantial decrease in PPh/PPs with increasing σys/σuc, predominantly exhibiting U-shaped or dog-bone failure modes in different scenarios. Proven that GP, KNN, and RF are the superior performers, ranking ahead of SVM with Gaussian Kernel (SVM-GK), MLP, and SVM with Linear Kernel (SVM-LK). Statistical metrics, Taylor Diagram analysis, and comparisons with FE results emphasize the effectiveness of GP, KNN, and RF. Additionally, normality tests and feature importance analysis provide nuanced insights. •Predicting PP in hybrid steel-CFRP pipes using FE and ML; model validated against prior experiments.•Failure modes identified; 3-phase ML framework with RF, KNN, GP, MLP, and SVM proposed for analysis.•GP, KNN, RF outperform SVM-GK, MLP, SVM-LK in PP prediction; feature importance also analyzed.•Combining ML with dimensional analysis enhances understanding of hybrid steel-CFRP pipe behavior.</description><identifier>ISSN: 0029-8018</identifier><identifier>DOI: 10.1016/j.oceaneng.2024.118808</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Buckle propagation ; Collapse ; Hybrid steel-CFRP pipe ; Machine learning ; U-shape failure</subject><ispartof>Ocean engineering, 2024-11, Vol.311, p.118808, Article 118808</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-43c187f74ecc0b47588d8355cc338df469278146ad8f9202b41b4abd4b9256923</cites><orcidid>0000-0002-0148-9659 ; 0000-0003-2868-7505 ; 0000-0003-0259-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Alrsai, Mahmoud</creatorcontrib><creatorcontrib>Alsahalen, Ala’</creatorcontrib><creatorcontrib>Karampour, Hassan</creatorcontrib><creatorcontrib>Alhawamdeh, Mohammad</creatorcontrib><creatorcontrib>Alajarmeh, Omar</creatorcontrib><title>Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines</title><title>Ocean engineering</title><description>Accurate prediction of the propagation pressure (PP) in hybrid steel-CFRP pipe systems presents a substantial challenge due to intricate interactions and complex collapse failure modes. An efficient FE-based algorithm is programmed using ANSYS to numerically estimate the PP of hybrid steel-CFRP pipe, subjected to external pressure. This study employs a machine learning (ML) framework, addressing the inherent complexity with a three-phase approach: Parameter Design, Buckle Propagation Analysis, and ML Model Development. The dataset, encompassing about two thousand observations with four key features, undergoes k-fold cross-validation and min-max normalization for robust ML performance. Five ML models—Random Forest (RF), K-Nearest Neighbors (KNN), Genetic Programming (GP), Multi-layer Perceptron (MLP), and Support Vector Machine (SVM)—are developed and evaluated. The results revealed a significant influence of Ds/ts, a three-phase relationship with ts/tc, and a substantial decrease in PPh/PPs with increasing σys/σuc, predominantly exhibiting U-shaped or dog-bone failure modes in different scenarios. Proven that GP, KNN, and RF are the superior performers, ranking ahead of SVM with Gaussian Kernel (SVM-GK), MLP, and SVM with Linear Kernel (SVM-LK). Statistical metrics, Taylor Diagram analysis, and comparisons with FE results emphasize the effectiveness of GP, KNN, and RF. Additionally, normality tests and feature importance analysis provide nuanced insights. •Predicting PP in hybrid steel-CFRP pipes using FE and ML; model validated against prior experiments.•Failure modes identified; 3-phase ML framework with RF, KNN, GP, MLP, and SVM proposed for analysis.•GP, KNN, RF outperform SVM-GK, MLP, SVM-LK in PP prediction; feature importance also analyzed.•Combining ML with dimensional analysis enhances understanding of hybrid steel-CFRP pipe behavior.</description><subject>Buckle propagation</subject><subject>Collapse</subject><subject>Hybrid steel-CFRP pipe</subject><subject>Machine learning</subject><subject>U-shape failure</subject><issn>0029-8018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhb0AiVK4AvIFEuzESZwdqKJQqRKIn7Xln0nqKnUi20XqFTg1LoU1q3l6o_c08yF0Q0lOCa1vt_moQTpwfV6QguWUck74GZoRUrQZJ5RfoMsQtoSQuiblDH2tXITeywgGd9bZCBgG2IGLWDo5HIINSRi8k3pjHeABpHfW9VhOkx-TibvR4yQn2ctoR5c0hLD3cBTG6h_POrw5KG8NfosAQ7ZYvr7gsFcBJJ7sBEOqDlfovJNDgOvfOUcfy4f3xVO2fn5cLe7Xmaa8jRkr02y6hoHWRLGm4tzwsqq0LktuOla3RcMpq6XhXZsgKEYVk8ow1RZVWpZzVJ96tR9D8NCJydud9AdBiThSFFvxR1EcKYoTxRS8OwUhXfdpwYugLTid3vSgozCj_a_iGyJPg84</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Alrsai, Mahmoud</creator><creator>Alsahalen, Ala’</creator><creator>Karampour, Hassan</creator><creator>Alhawamdeh, Mohammad</creator><creator>Alajarmeh, Omar</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0148-9659</orcidid><orcidid>https://orcid.org/0000-0003-2868-7505</orcidid><orcidid>https://orcid.org/0000-0003-0259-9558</orcidid></search><sort><creationdate>20241101</creationdate><title>Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines</title><author>Alrsai, Mahmoud ; Alsahalen, Ala’ ; Karampour, Hassan ; Alhawamdeh, Mohammad ; Alajarmeh, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-43c187f74ecc0b47588d8355cc338df469278146ad8f9202b41b4abd4b9256923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buckle propagation</topic><topic>Collapse</topic><topic>Hybrid steel-CFRP pipe</topic><topic>Machine learning</topic><topic>U-shape failure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alrsai, Mahmoud</creatorcontrib><creatorcontrib>Alsahalen, Ala’</creatorcontrib><creatorcontrib>Karampour, Hassan</creatorcontrib><creatorcontrib>Alhawamdeh, Mohammad</creatorcontrib><creatorcontrib>Alajarmeh, Omar</creatorcontrib><collection>CrossRef</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alrsai, Mahmoud</au><au>Alsahalen, Ala’</au><au>Karampour, Hassan</au><au>Alhawamdeh, Mohammad</au><au>Alajarmeh, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines</atitle><jtitle>Ocean engineering</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>311</volume><spage>118808</spage><pages>118808-</pages><artnum>118808</artnum><issn>0029-8018</issn><abstract>Accurate prediction of the propagation pressure (PP) in hybrid steel-CFRP pipe systems presents a substantial challenge due to intricate interactions and complex collapse failure modes. An efficient FE-based algorithm is programmed using ANSYS to numerically estimate the PP of hybrid steel-CFRP pipe, subjected to external pressure. This study employs a machine learning (ML) framework, addressing the inherent complexity with a three-phase approach: Parameter Design, Buckle Propagation Analysis, and ML Model Development. The dataset, encompassing about two thousand observations with four key features, undergoes k-fold cross-validation and min-max normalization for robust ML performance. Five ML models—Random Forest (RF), K-Nearest Neighbors (KNN), Genetic Programming (GP), Multi-layer Perceptron (MLP), and Support Vector Machine (SVM)—are developed and evaluated. The results revealed a significant influence of Ds/ts, a three-phase relationship with ts/tc, and a substantial decrease in PPh/PPs with increasing σys/σuc, predominantly exhibiting U-shaped or dog-bone failure modes in different scenarios. Proven that GP, KNN, and RF are the superior performers, ranking ahead of SVM with Gaussian Kernel (SVM-GK), MLP, and SVM with Linear Kernel (SVM-LK). Statistical metrics, Taylor Diagram analysis, and comparisons with FE results emphasize the effectiveness of GP, KNN, and RF. Additionally, normality tests and feature importance analysis provide nuanced insights. •Predicting PP in hybrid steel-CFRP pipes using FE and ML; model validated against prior experiments.•Failure modes identified; 3-phase ML framework with RF, KNN, GP, MLP, and SVM proposed for analysis.•GP, KNN, RF outperform SVM-GK, MLP, SVM-LK in PP prediction; feature importance also analyzed.•Combining ML with dimensional analysis enhances understanding of hybrid steel-CFRP pipe behavior.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2024.118808</doi><orcidid>https://orcid.org/0000-0002-0148-9659</orcidid><orcidid>https://orcid.org/0000-0003-2868-7505</orcidid><orcidid>https://orcid.org/0000-0003-0259-9558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-8018
ispartof Ocean engineering, 2024-11, Vol.311, p.118808, Article 118808
issn 0029-8018
language eng
recordid cdi_crossref_primary_10_1016_j_oceaneng_2024_118808
source ScienceDirect Journals
subjects Buckle propagation
Collapse
Hybrid steel-CFRP pipe
Machine learning
U-shape failure
title Integrated finite element analysis and machine learning approach for propagation pressure prediction in hybrid Steel-CFRP subsea pipelines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20finite%20element%20analysis%20and%20machine%20learning%20approach%20for%20propagation%20pressure%20prediction%20in%20hybrid%20Steel-CFRP%20subsea%20pipelines&rft.jtitle=Ocean%20engineering&rft.au=Alrsai,%20Mahmoud&rft.date=2024-11-01&rft.volume=311&rft.spage=118808&rft.pages=118808-&rft.artnum=118808&rft.issn=0029-8018&rft_id=info:doi/10.1016/j.oceaneng.2024.118808&rft_dat=%3Celsevier_cross%3ES0029801824021462%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c189t-43c187f74ecc0b47588d8355cc338df469278146ad8f9202b41b4abd4b9256923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true