Loading…
The development of habitat suitability models for fiddler crabs residing in subtropical tidal flats
Fiddler crabs are deposit feeders that play critical roles as ecological engineers in tidal flats. Recently, anthropogenic disturbances have led to fiddler crab habitat loss and/or degradation; therefore, we developed a mathematically derived habitat suitability index (HSI) model to aid in habitat a...
Saved in:
Published in: | Ocean & coastal management 2019-12, Vol.182, p.104931, Article 104931 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fiddler crabs are deposit feeders that play critical roles as ecological engineers in tidal flats. Recently, anthropogenic disturbances have led to fiddler crab habitat loss and/or degradation; therefore, we developed a mathematically derived habitat suitability index (HSI) model to aid in habitat assessments of fiddler crabs. Based on what is known about the life histories of fiddler crabs, the variables of an HSI model included submersion time, interstitial salinity, and soil 1) grain size, 2) organic matter content, and 3) heat capacity. We acquired density data from four fiddler crab species—Xeruca formosensis, Tubuca arcuata, Austruca lactea, and Gelasimus borealis— at five sites on the western coast of Taiwan to develop the HSI models. Significant positive correlations existed between the HSI output and fiddler crab density for all target species except for those X. formosensis inhabiting the topsoil layer (0–20 cm). For the deep burrowers X. formosensis, however, a positive linear relationship was documented when only those data from the 40–60 cm layers were considered and if the habitat was a sand-covered mudflat. Mapping for each species was conducted using the HSI models with the highest reliability, and four classification levels were established for the habitat suitability of each species at one of the study sites. Based on this field test of a fiddler crab HSI model, we have developed a platform for the proactive conservation of fiddler crabs inhabiting subtropical tidal flats.
•Habitat suitability indices and mapping for Taiwanese fiddler crabs were conducted.•Soil heat capacity was first introduced for crabs' habitat evaluation.•For deep burrowers, vertical soil texture is a requirement for a sand-covered mudflat.•The HSI models and maps of fiddler crabs are useful for conservation planning. |
---|---|
ISSN: | 0964-5691 1873-524X |
DOI: | 10.1016/j.ocecoaman.2019.104931 |