Loading…
Optimization berth allocation in container terminals: A Pyomo and Google Colab approach
Efficient berth allocation profoundly influences container terminal operations, affecting vessel waiting and turnaround times, and overall performance. This study presents a mixed-integer linear programming (MILP) model addressing the Berth Allocation Problem (BAP) in a Malaysian container port. By...
Saved in:
Published in: | Ocean & coastal management 2024-11, Vol.258, p.107359, Article 107359 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c191t-4c21d7572498fdb87a96a41f80482be1fa8e24c687ef8aa32279e8259c8d71e33 |
container_end_page | |
container_issue | |
container_start_page | 107359 |
container_title | Ocean & coastal management |
container_volume | 258 |
creator | Nazri, Siti Nur 'Ain Mokhtar, Kasypi Abu Bakar, Anuar Mclellan, Benjamin Craig Mhd Ruslan, Siti Marsila |
description | Efficient berth allocation profoundly influences container terminal operations, affecting vessel waiting and turnaround times, and overall performance. This study presents a mixed-integer linear programming (MILP) model addressing the Berth Allocation Problem (BAP) in a Malaysian container port. By incorporating the Pyomo optimization library and CBC (Coin-or Branch and Cut) solver in Google Colab, optimal berth allocations are determined, minimizing vessel turnaround times. Visualized in a Space-Time diagram, the results highlight efficient allocation strategies. Despite limitations, the study optimally resolved three instances, achieving a remarkable 38.54% reduction in overall vessel turnaround time compared to FCFS (First-Come-First-Serve) allocation. By prioritizing port turnaround time, the optimization substantially reduced berthing and departure delays, aligning with UNCTAD's call for enhanced port efficiency and accelerated decarbonization efforts. |
doi_str_mv | 10.1016/j.ocecoaman.2024.107359 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ocecoaman_2024_107359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0964569124003442</els_id><sourcerecordid>S0964569124003442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-4c21d7572498fdb87a96a41f80482be1fa8e24c687ef8aa32279e8259c8d71e33</originalsourceid><addsrcrecordid>eNqFkM9KAzEYxHNQsFafwbzA1iT7J4m3UrQKhXpQPIZvs9_alN1kyQahPr1bVrx6GhhmhuFHyB1nK854dX9cBYs2QA9-JZgoJlfmpb4gC6arIisrza_I9TgeGWOirNSCfOyH5Hr3DckFT2uM6UCh64KdDeepDT6B8xhpwtg7D934QNf09RT6QME3dBvCZ4d0EzqoKQxDDGAPN-SynZJ4-6tL8v70-LZ5znb77ctmvcss1zxlhRW8kaUUhVZtUysJuoKCt4oVStTIW1AoClspia0CyIWQGpUotVWN5JjnSyLnXRvDOEZszRBdD_FkODNnJuZo_piYMxMzM5ma67mJ070vh9GM1qG32LiINpkmuH83fgAHcnGW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization berth allocation in container terminals: A Pyomo and Google Colab approach</title><source>Elsevier</source><creator>Nazri, Siti Nur 'Ain ; Mokhtar, Kasypi ; Abu Bakar, Anuar ; Mclellan, Benjamin Craig ; Mhd Ruslan, Siti Marsila</creator><creatorcontrib>Nazri, Siti Nur 'Ain ; Mokhtar, Kasypi ; Abu Bakar, Anuar ; Mclellan, Benjamin Craig ; Mhd Ruslan, Siti Marsila</creatorcontrib><description>Efficient berth allocation profoundly influences container terminal operations, affecting vessel waiting and turnaround times, and overall performance. This study presents a mixed-integer linear programming (MILP) model addressing the Berth Allocation Problem (BAP) in a Malaysian container port. By incorporating the Pyomo optimization library and CBC (Coin-or Branch and Cut) solver in Google Colab, optimal berth allocations are determined, minimizing vessel turnaround times. Visualized in a Space-Time diagram, the results highlight efficient allocation strategies. Despite limitations, the study optimally resolved three instances, achieving a remarkable 38.54% reduction in overall vessel turnaround time compared to FCFS (First-Come-First-Serve) allocation. By prioritizing port turnaround time, the optimization substantially reduced berthing and departure delays, aligning with UNCTAD's call for enhanced port efficiency and accelerated decarbonization efforts.</description><identifier>ISSN: 0964-5691</identifier><identifier>DOI: 10.1016/j.ocecoaman.2024.107359</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Berth allocation problem ; Berth template ; Optimization ; Pyomo</subject><ispartof>Ocean & coastal management, 2024-11, Vol.258, p.107359, Article 107359</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-4c21d7572498fdb87a96a41f80482be1fa8e24c687ef8aa32279e8259c8d71e33</cites><orcidid>0009-0008-6910-471X ; 0000-0002-2807-0807 ; 0000-0002-4802-3864 ; 0000-0002-6050-9883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nazri, Siti Nur 'Ain</creatorcontrib><creatorcontrib>Mokhtar, Kasypi</creatorcontrib><creatorcontrib>Abu Bakar, Anuar</creatorcontrib><creatorcontrib>Mclellan, Benjamin Craig</creatorcontrib><creatorcontrib>Mhd Ruslan, Siti Marsila</creatorcontrib><title>Optimization berth allocation in container terminals: A Pyomo and Google Colab approach</title><title>Ocean & coastal management</title><description>Efficient berth allocation profoundly influences container terminal operations, affecting vessel waiting and turnaround times, and overall performance. This study presents a mixed-integer linear programming (MILP) model addressing the Berth Allocation Problem (BAP) in a Malaysian container port. By incorporating the Pyomo optimization library and CBC (Coin-or Branch and Cut) solver in Google Colab, optimal berth allocations are determined, minimizing vessel turnaround times. Visualized in a Space-Time diagram, the results highlight efficient allocation strategies. Despite limitations, the study optimally resolved three instances, achieving a remarkable 38.54% reduction in overall vessel turnaround time compared to FCFS (First-Come-First-Serve) allocation. By prioritizing port turnaround time, the optimization substantially reduced berthing and departure delays, aligning with UNCTAD's call for enhanced port efficiency and accelerated decarbonization efforts.</description><subject>Berth allocation problem</subject><subject>Berth template</subject><subject>Optimization</subject><subject>Pyomo</subject><issn>0964-5691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEYxHNQsFafwbzA1iT7J4m3UrQKhXpQPIZvs9_alN1kyQahPr1bVrx6GhhmhuFHyB1nK854dX9cBYs2QA9-JZgoJlfmpb4gC6arIisrza_I9TgeGWOirNSCfOyH5Hr3DckFT2uM6UCh64KdDeepDT6B8xhpwtg7D934QNf09RT6QME3dBvCZ4d0EzqoKQxDDGAPN-SynZJ4-6tL8v70-LZ5znb77ctmvcss1zxlhRW8kaUUhVZtUysJuoKCt4oVStTIW1AoClspia0CyIWQGpUotVWN5JjnSyLnXRvDOEZszRBdD_FkODNnJuZo_piYMxMzM5ma67mJ070vh9GM1qG32LiINpkmuH83fgAHcnGW</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nazri, Siti Nur 'Ain</creator><creator>Mokhtar, Kasypi</creator><creator>Abu Bakar, Anuar</creator><creator>Mclellan, Benjamin Craig</creator><creator>Mhd Ruslan, Siti Marsila</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-6910-471X</orcidid><orcidid>https://orcid.org/0000-0002-2807-0807</orcidid><orcidid>https://orcid.org/0000-0002-4802-3864</orcidid><orcidid>https://orcid.org/0000-0002-6050-9883</orcidid></search><sort><creationdate>20241101</creationdate><title>Optimization berth allocation in container terminals: A Pyomo and Google Colab approach</title><author>Nazri, Siti Nur 'Ain ; Mokhtar, Kasypi ; Abu Bakar, Anuar ; Mclellan, Benjamin Craig ; Mhd Ruslan, Siti Marsila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-4c21d7572498fdb87a96a41f80482be1fa8e24c687ef8aa32279e8259c8d71e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Berth allocation problem</topic><topic>Berth template</topic><topic>Optimization</topic><topic>Pyomo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazri, Siti Nur 'Ain</creatorcontrib><creatorcontrib>Mokhtar, Kasypi</creatorcontrib><creatorcontrib>Abu Bakar, Anuar</creatorcontrib><creatorcontrib>Mclellan, Benjamin Craig</creatorcontrib><creatorcontrib>Mhd Ruslan, Siti Marsila</creatorcontrib><collection>CrossRef</collection><jtitle>Ocean & coastal management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazri, Siti Nur 'Ain</au><au>Mokhtar, Kasypi</au><au>Abu Bakar, Anuar</au><au>Mclellan, Benjamin Craig</au><au>Mhd Ruslan, Siti Marsila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization berth allocation in container terminals: A Pyomo and Google Colab approach</atitle><jtitle>Ocean & coastal management</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>258</volume><spage>107359</spage><pages>107359-</pages><artnum>107359</artnum><issn>0964-5691</issn><abstract>Efficient berth allocation profoundly influences container terminal operations, affecting vessel waiting and turnaround times, and overall performance. This study presents a mixed-integer linear programming (MILP) model addressing the Berth Allocation Problem (BAP) in a Malaysian container port. By incorporating the Pyomo optimization library and CBC (Coin-or Branch and Cut) solver in Google Colab, optimal berth allocations are determined, minimizing vessel turnaround times. Visualized in a Space-Time diagram, the results highlight efficient allocation strategies. Despite limitations, the study optimally resolved three instances, achieving a remarkable 38.54% reduction in overall vessel turnaround time compared to FCFS (First-Come-First-Serve) allocation. By prioritizing port turnaround time, the optimization substantially reduced berthing and departure delays, aligning with UNCTAD's call for enhanced port efficiency and accelerated decarbonization efforts.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ocecoaman.2024.107359</doi><orcidid>https://orcid.org/0009-0008-6910-471X</orcidid><orcidid>https://orcid.org/0000-0002-2807-0807</orcidid><orcidid>https://orcid.org/0000-0002-4802-3864</orcidid><orcidid>https://orcid.org/0000-0002-6050-9883</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-5691 |
ispartof | Ocean & coastal management, 2024-11, Vol.258, p.107359, Article 107359 |
issn | 0964-5691 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ocecoaman_2024_107359 |
source | Elsevier |
subjects | Berth allocation problem Berth template Optimization Pyomo |
title | Optimization berth allocation in container terminals: A Pyomo and Google Colab approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20berth%20allocation%20in%20container%20terminals:%20A%20Pyomo%20and%20Google%20Colab%20approach&rft.jtitle=Ocean%20&%20coastal%20management&rft.au=Nazri,%20Siti%20Nur%20'Ain&rft.date=2024-11-01&rft.volume=258&rft.spage=107359&rft.pages=107359-&rft.artnum=107359&rft.issn=0964-5691&rft_id=info:doi/10.1016/j.ocecoaman.2024.107359&rft_dat=%3Celsevier_cross%3ES0964569124003442%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-4c21d7572498fdb87a96a41f80482be1fa8e24c687ef8aa32279e8259c8d71e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |