Loading…
Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model
Saved in:
Published in: | Ocean modelling (Oxford) 2023-12, Vol.186, p.102263, Article 102263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363 |
---|---|
cites | cdi_FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363 |
container_end_page | |
container_issue | |
container_start_page | 102263 |
container_title | Ocean modelling (Oxford) |
container_volume | 186 |
creator | Ying, Chen Xiao, Li Xueliang, Zhao Wenyang, Song Chongxuan, Xu |
description | |
doi_str_mv | 10.1016/j.ocemod.2023.102263 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ocemod_2023_102263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1016_j_ocemod_2023_102263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363</originalsourceid><addsrcrecordid>eNotkMtOwzAQRb0AiVL4Axb-gRQ_J-kSVbykIjawtpzxRE1x48hJQf17ErWr-9DVaHQYe5BiJYWEx_0qIR1SWCmh9FQpBfqKLaQBXVgh9A27HYa9ELKU2i6Y-_C57YjjLqac-t0pxsLzPlNocWxTx2s_UOCTCUQ998cxFdRhClM50qFP2UeOqftN8Tjvp9TR-JfyD5-eoHjHrhsfB7q_6JJ9vzx_bd6K7efr--ZpW6CyciwsVKKBYBoDpiwBDCJpwFqXoWpsjWTqCmoftKWKNFkE8GtSgEKuvdKgl8yc72JOw5CpcX1uDz6fnBRuBuP27gzGzWDcGYz-ByMIXUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model</title><source>Elsevier</source><creator>Ying, Chen ; Xiao, Li ; Xueliang, Zhao ; Wenyang, Song ; Chongxuan, Xu</creator><creatorcontrib>Ying, Chen ; Xiao, Li ; Xueliang, Zhao ; Wenyang, Song ; Chongxuan, Xu</creatorcontrib><identifier>ISSN: 1463-5003</identifier><identifier>DOI: 10.1016/j.ocemod.2023.102263</identifier><language>eng</language><ispartof>Ocean modelling (Oxford), 2023-12, Vol.186, p.102263, Article 102263</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363</citedby><cites>FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ying, Chen</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Xueliang, Zhao</creatorcontrib><creatorcontrib>Wenyang, Song</creatorcontrib><creatorcontrib>Chongxuan, Xu</creatorcontrib><title>Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model</title><title>Ocean modelling (Oxford)</title><issn>1463-5003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRb0AiVL4Axb-gRQ_J-kSVbykIjawtpzxRE1x48hJQf17ErWr-9DVaHQYe5BiJYWEx_0qIR1SWCmh9FQpBfqKLaQBXVgh9A27HYa9ELKU2i6Y-_C57YjjLqac-t0pxsLzPlNocWxTx2s_UOCTCUQ998cxFdRhClM50qFP2UeOqftN8Tjvp9TR-JfyD5-eoHjHrhsfB7q_6JJ9vzx_bd6K7efr--ZpW6CyciwsVKKBYBoDpiwBDCJpwFqXoWpsjWTqCmoftKWKNFkE8GtSgEKuvdKgl8yc72JOw5CpcX1uDz6fnBRuBuP27gzGzWDcGYz-ByMIXUg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Ying, Chen</creator><creator>Xiao, Li</creator><creator>Xueliang, Zhao</creator><creator>Wenyang, Song</creator><creator>Chongxuan, Xu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model</title><author>Ying, Chen ; Xiao, Li ; Xueliang, Zhao ; Wenyang, Song ; Chongxuan, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Chen</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Xueliang, Zhao</creatorcontrib><creatorcontrib>Wenyang, Song</creatorcontrib><creatorcontrib>Chongxuan, Xu</creatorcontrib><collection>CrossRef</collection><jtitle>Ocean modelling (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Chen</au><au>Xiao, Li</au><au>Xueliang, Zhao</au><au>Wenyang, Song</au><au>Chongxuan, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model</atitle><jtitle>Ocean modelling (Oxford)</jtitle><date>2023-12</date><risdate>2023</risdate><volume>186</volume><spage>102263</spage><pages>102263-</pages><artnum>102263</artnum><issn>1463-5003</issn><doi>10.1016/j.ocemod.2023.102263</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-5003 |
ispartof | Ocean modelling (Oxford), 2023-12, Vol.186, p.102263, Article 102263 |
issn | 1463-5003 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ocemod_2023_102263 |
source | Elsevier |
title | Marine chlorophyll-a prediction based on deep auto-encoded temporal convolutional network model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20chlorophyll-a%20prediction%20based%20on%20deep%20auto-encoded%20temporal%20convolutional%20network%20model&rft.jtitle=Ocean%20modelling%20(Oxford)&rft.au=Ying,%20Chen&rft.date=2023-12&rft.volume=186&rft.spage=102263&rft.pages=102263-&rft.artnum=102263&rft.issn=1463-5003&rft_id=info:doi/10.1016/j.ocemod.2023.102263&rft_dat=%3Ccrossref%3E10_1016_j_ocemod_2023_102263%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-5680f6d4f46477664cce36cb37d8f5bce4b86bad35e8e3e5c66a9e26c019a2363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |