Loading…
Fiber grating couplers for silicon nanophotonic circuits: Design modeling methodology and fabrication tolerances
Silicon nanophotonic circuits can exhibit a very high level of functional integration due to the very small cross sections of the silicon waveguides. However, to be implemented in data transmission networks, such circuits still must be interfaced with optical fibers having much larger dimensions. Du...
Saved in:
Published in: | Optics communications 2009-11, Vol.282 (21), p.4242-4248 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicon nanophotonic circuits can exhibit a very high level of functional integration due to the very small cross sections of the silicon waveguides. However, to be implemented in data transmission networks, such circuits still must be interfaced with optical fibers having much larger dimensions. Due to this mismatch in size, a coupling structure is required in order to minimize the coupling loss. Diffraction grating coupler structures are one of the best candidates to perform this mode size conversion with good performances. However, they are also very sensitive to fabrication tolerances that may require an adaptation of the coupling conditions. In this paper, we present an iterative numerical method to optimize the design of a grating coupler by analyzing the out coupled beam from the waveguide towards the fiber. Using this method we show in details the sensitivity of the grating couplers to the principal fabrication variabilities in order to maximize the robustness of the design. A grating with 53% fiber to waveguide coupling efficiency is designed. Considering the dispersion of the modern CMOS fabrication processing, it appears that the optimal fiber coupling ratio remains rather constant but the optimal coupling angle at a given wavelength may vary by as much as ±10°. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2009.07.060 |