Loading…
Self-trapped elliptical super-Gaussian beam in cubic–quintic media
We find self-trapped propagation of elliptical super-Gaussian beam in cubic–quintic nonlinear media. The soliton beam preserves its shape and size during propagation in Kerr media. Both defocusing and focusing quintic nonlinearities are considered. In a cubic (focusing)-quintic (defocusing) media br...
Saved in:
Published in: | Optics communications 2014-12, Vol.332, p.311-320 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We find self-trapped propagation of elliptical super-Gaussian beam in cubic–quintic nonlinear media. The soliton beam preserves its shape and size during propagation in Kerr media. Both defocusing and focusing quintic nonlinearities are considered. In a cubic (focusing)-quintic (defocusing) media breather like beam propagation with intriguing beam width oscillation is observed. The influence of beam ellipticity, super-Gaussian nature and quintic nonlinearity on self-trapping has been studied. A formula for critical power for self-focusing has been derived and it readily agrees with the results obtained by variational method. In Kerr and focusing quintic media beam collapse occurs quicker for higher order super-Gaussian beam. The critical power of self-focusing in defocusing (focusing) quintic medium prominently increases (decreases) with increasing strength of quintic nonlinearity. This variation rate is greater for higher order super Gaussian beam. A beam with greater ellipticity requires larger power for self-trapping. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2014.06.061 |