Loading…
Parity-time symmetry based on resonant optical tunneling effect for biosensing
This paper proposes and analyzes a parity-time (PT) symmetry structure based on resonant optical tunneling effect (ROTE) by using two directly coupled ROTE resonators to achieve a balanced gain-loss distribution. The unbroken/broken states of the PT symmetric system are theoretically verified by cou...
Saved in:
Published in: | Optics communications 2020-11, Vol.475, p.125815, Article 125815 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes and analyzes a parity-time (PT) symmetry structure based on resonant optical tunneling effect (ROTE) by using two directly coupled ROTE resonators to achieve a balanced gain-loss distribution. The unbroken/broken states of the PT symmetric system are theoretically verified by coupled-mode theory (CMT), transmission matrix method (TMM) and finite-difference time-domain (FDTD). To demonstrate the application potential, we further propose a label-free biosensing scheme that takes advantages of the square-root dependence in frequency splitting near exceptional point (EP). The theoretical results show that the sensor has a maximum sensitivity of 1 × 105 nm/IP unit (imaginary part unit of refractive index) and a theoretical detection limit of 5 × 10−10 IP unit (corresponds to 0.4 ng carcinoembryonic antigen (CEA)). Compared with the PT systems based on coupled waveguides or resonators, our design has some distinctive features. It is a multi-layer structure and does not need complicated nanoscale fabrication; the liquid samples “flow-through” the sensing region in the mid of PT structure and would greatly enhance the analyte binding efficiency as compared with the common “flow-over” manner. This simple yet highly sensitive platform would find applications in biomedical sensors, drinking water safety, and drug screening. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2020.125815 |