Loading…
Generation of long range low-divergent Gauss–Bessel beams by annihilating optical vortices
Bessel beams are remarkable since they do not diverge. Accordingly, they have numerous applications ranging from precision laser micro-machining to laser particle acceleration. We demonstrate a novel approach for generating long-range Gauss–Bessel beams. A ring-shaped beam is produced by imprinting...
Saved in:
Published in: | Optics communications 2021-02, Vol.480, p.126510, Article 126510 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bessel beams are remarkable since they do not diverge. Accordingly, they have numerous applications ranging from precision laser micro-machining to laser particle acceleration. We demonstrate a novel approach for generating long-range Gauss–Bessel beams. A ring-shaped beam is produced by imprinting a vortex with high topological charge in a Gaussian beam. The phase singularities are thereafter removed and the ring-shaped beam focused/Fourier-transformed by a thin lens. This results in a remarkably good realization of a Gauss–Bessel beam. Divergence angles in the microradian range and Gauss–Bessel beam lengths up to 2.5 m behind the focal plane of the lens are demonstrated. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2020.126510 |