Loading…
Ultra-low noise PEDOT:PSS electrodes on bacterial cellulose: A sensor to access bioelectrical signals in non-electrogenic cells
This study is focused on the particular advantages of organic-based devices to measure cells that do not generate action potentials, also known as non-electrogenic cells. While there is a vast literature about the application of organic conductors to measure neurons, cardiomyocytes and brain tissues...
Saved in:
Published in: | Organic electronics 2020-10, Vol.85, p.105882, Article 105882 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study is focused on the particular advantages of organic-based devices to measure cells that do not generate action potentials, also known as non-electrogenic cells. While there is a vast literature about the application of organic conductors to measure neurons, cardiomyocytes and brain tissues, electrical measurements of non-electrogenic cells are rare. This is because non-electrogenic cells generate weak signals with frequencies below 1 Hz. Designing low noise devices in a millihertz frequency range is extremely challenging due to the intrinsic thermal and 1/f type noise generated by the sensing electrode. Here, we demonstrate that the coating of cellulose nanofibers with conducting PEDOT:PSS ink allows the fabrication of a nanostructured surface that establishes a low electrical double-layer resistance with liquid solutions. The low interfacial resistance combined with the large effective sensing area of PEDOT:PSS electrodes minimizes the thermal noise and lowers the amplitude detection limit of the sensor. The electrode noise decreases with frequency from 548 nV r.m.s at 0.1 Hz to a minimum of 6 nV r.m.s for frequencies higher than 100 Hz. This low noise makes it possible to measure low frequency bioelectrical communication signals, typical of non-electrogenic cells, that have until now been difficult to explore using metallic-based microelectrode arrays. The performance of the PEDOT:PSS-based electrodes is demonstrated by recording signals generated by populations of glioma cells with a signal-to-noise ratio as high as 140.
[Display omitted]
•PEDOT:PSS-based electrodes in low frequency electrophysiology studies.•PEDOT:PSS/electrolyte interfaces have a very low intrinsic noise.•Charging effects on PEDOT:PSS electrodes improve the SNR in biosignal recordings.•PEDOT:PSS-based electrodes provide access to signals in non-electrogenic cells. |
---|---|
ISSN: | 1566-1199 1878-5530 |
DOI: | 10.1016/j.orgel.2020.105882 |