Loading…
Thin-walled deployable composite structures: A review
The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding...
Saved in:
Published in: | Progress in aerospace sciences 2024-04, Vol.146, p.100985, Article 100985 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The elastic strain energy-driven thin-walled deployable composite structures, characterized by their integration of structure and functionality, have attracted considerable attention in the field of space applications. These structures utilize the stored strain energy accumulated during the folding process to achieve elastic deployment. Significant progress has been made in the understanding of deformation mechanisms, modeling, design, optimization, and applications of such structures based on existing research. This review critically discusses over 300 papers from the past few decades, providing a comprehensive exploration of the development of three representative types of deployable composite structures: deployable composite hinges, booms, and reflectors. Specifically, it starts by reviewing the structural design, functional mechanisms, theories, finite element modeling methods and experimental investigations for these three types of structures. It then introduces optimization design methods and their applications in deployable composite structures. Additionally, specific practical application cases of deployable composite structures are discussed. Finally, future challenges and prospects for deployable composite structures are outlined. This paper serves as a valuable reference and inspiration for the design and application of deployable composite structures. It is expected to promote further advancements in this field. |
---|---|
ISSN: | 0376-0421 1873-1724 |
DOI: | 10.1016/j.paerosci.2024.100985 |