Loading…

High-resolution trace element distributions and models of trace element diffusion in enamel of Late Neolithic/Early Chalcolithic human molars from the Rioja Alavesa region (north-central Spain) help to separate biogenic from diagenetic trends

High resolution in situ trace element μXRF maps and profiles were measured on the enamel exposed in cross sections through archaeological human permanent molars from seven Late Neolithic/Early Chalcolithic funerary caves and megalithic graves of north-central Iberia. Changes in concentrations of Fe,...

Full description

Saved in:
Bibliographic Details
Published in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2019-10, Vol.532, p.109260, Article 109260
Main Authors: de Winter, Niels J., Snoeck, Christophe, Schulting, Rick, Fernández-Crespo, Teresa, Claeys, Philippe
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High resolution in situ trace element μXRF maps and profiles were measured on the enamel exposed in cross sections through archaeological human permanent molars from seven Late Neolithic/Early Chalcolithic funerary caves and megalithic graves of north-central Iberia. Changes in concentrations of Fe, Zn and Sr in inward direction into the enamel shed light on diagenetic and endogenous trace element concentrations in archaeological tooth enamel. Most of these profiles resemble sigmoid-shaped leaching profiles, suggesting that a combination of diffusion and advection processes govern the uptake of trace elements into the enamel from pore fluids on the outside of the tooth and in the more porous dentine. The present study shows how diffusion-advection (DA) models can be fitted to these trace element profiles to explain changes in trace element concentrations that happen during diagenesis. DA models explain a major part of the variation observed in leaching profiles into the enamel and can be used to reconstruct endogenous trace element concentrations, leaching times and leaching depth as well as trace element concentrations in ambient pore water during diagenesis. Models of trace element leaching together with trace element mapping reveal that Fe, Zn and Sr concentrations consistently increase during diagenesis, regardless of the type of burial site (i.e. funerary caves vs. megalithic graves). Profiles of Pb concentrations show much smaller concentration gradients, causing DA model fitting to be less accurate. Modelled leaching depths of 300–400 μm warrant a careful approach when sampling for endogenous archaeological tooth enamel for trace element and stable isotope analysis. Results also show that it is possible to reconstruct endogenous trace element concentrations from these samples, even without applying pretreatment procedures, because leaching of trace elements into the enamel often remains limited to the outer 300–400 μm of the enamel on archaeological timescales. Modelled leaching times are about ten times lower than the age of the samples, suggesting that the rate of trace element leaching into tooth enamel slows down or even halts during the burial period. •Micro X-Ray Fluorescence scanning reveals trace element variability in archaeological tooth enamel.•Fe, Zn, Sr and Pb leach into tooth enamel during diagenesis.•Diffusion-advection models reconstruct leaching parameters and pristine element concentrations.•Rates and depth of leaching differ per e
ISSN:0031-0182
1872-616X
DOI:10.1016/j.palaeo.2019.109260