Loading…
Volcanism intensity and associated climate-ocean-land dynamics during the Cryogenian interglaciation: Insights from mercury isotopes
The Cryogenian interglaciation (ca. 660 Ma to 650 Ma) was an interlude between the Sturtian glaciation (ca. 717 Ma to 660 Ma) and Marinoan glaciation (ca. 650 Ma to 635 Ma). Recent observations of anomalously high mercury (Hg) concentrations in Cryogenian interglacial sediments at basinal settings i...
Saved in:
Published in: | Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2023-08, Vol.623, p.111634, Article 111634 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Cryogenian interglaciation (ca. 660 Ma to 650 Ma) was an interlude between the Sturtian glaciation (ca. 717 Ma to 660 Ma) and Marinoan glaciation (ca. 650 Ma to 635 Ma). Recent observations of anomalously high mercury (Hg) concentrations in Cryogenian interglacial sediments at basinal settings in the Nanhua Rift Basin, South China, imply that large volcanism can be a possible driving force of the Cryogenian interglaciation. To test this hypothesis and understand the potential linkage between large volcanism and climate-ocean-land dynamics during the Cryogenian interglaciation, we investigate mercury (Hg) concentrations and isotopic composition of Cryogenian interglacial sediments at shallow water (shelf/slope) settings in the Nanhua Rift Basin, South China. The basal Mn-bearing black shales show an increased pattern in Hg concentrations (318 to 4400 ppb) and Hg/TOC ratios (243 to 1730 ppb/wt%), and overall positive Δ199Hg values (0.00 to 0.10‰), suggesting increasing volcanic Hg input into the ocean via atmospheric Hg(II) deposition in the early Cryogenian interglaciation. The upper siltstone samples show a dramatic decrease in Hg concentrations (from 5110 to 459 ppb) and a drop of Δ199Hg values (from 0.04 to −0.05‰), suggesting weakened volcanism during the middle-late Cryogenian interglaciation. Combined with the analyses of major and trace elements proxies, we demonstrate that (1) greenhouse climate in the early Cryogenian interglaciation induced high oceanic productivity, high organic burial on the seafloor and high terrestrial sulfate input into the ocean, which favors the deposition of Mn-bearing black shales in the ocean; and (2) weakened volcanism and continued continental weathering exhausted atmospheric CO2 and drove the global climate to the Marinoan glaciation. This study, therefore, provides important insights into the climate-ocean-land dynamics during the Cryogenian interglaciation.
•High Hg anomalies in Datangpo black shales suggest large volcanism in early Cryogenian interglaciation.•Greenhouse in early Cryogenian interglaciation triggered deposition of Mn-bearing black shales.•Negative Δ199Hg shifts in Datangpo siltstones suggest extensive continental weathering in late Cryogenian interglaciation. |
---|---|
ISSN: | 0031-0182 1872-616X |
DOI: | 10.1016/j.palaeo.2023.111634 |