Loading…

Modeling and optimization of the parameters affecting the in-situ microencapsulation process for producing epoxy-based self-healing anti-corrosion coatings

Micro/nanocapsules of urea-formaldehyde resin loaded with linseed oil, which are a self-healing agent in glass flake epoxy anti-corrosion paint, were prepared using a combination of ultrasonic homogenization and in-situ polymerization. The main objective of this study was to model and optimize the m...

Full description

Saved in:
Bibliographic Details
Published in:Particuology 2018-02, Vol.36 (1), p.59-69
Main Authors: Ebrahiminiya, Ali, Khorram, Mohammad, Hassanajili, Shadi, Javidi, Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Micro/nanocapsules of urea-formaldehyde resin loaded with linseed oil, which are a self-healing agent in glass flake epoxy anti-corrosion paint, were prepared using a combination of ultrasonic homogenization and in-situ polymerization. The main objective of this study was to model and optimize the microen- capsulation process. Five-level central composite design was used to design, model, and optimize the microencapsulation process. A quadratic model was constructed to show the dependency of the per- centage of encapsulated linseed oil and capsule size, as model responses, on the studied independent variables (the rotational speed of the agitator and the power and duration of sonication). Analysis of vari- ance showed that all of the variables have significant effects on the encapsulated linseed oil percentage, while the rotational speed of the agitator and sonication time is effective variables for controlling the capsule size. Under the determined optimum conditions, a maximum encapsulated linseed oil percentage (ELO%) of 93.9% and a minimum micro/nanocapsule size of 0.574 μm were achieved at 594 rpm agitation, 350 W sonication power, and 3 min sonication time. Validation of the model was performed. The percent- age relative errors between the predicted and experimental values of the ELO% and micro/nanocapsule size are 1.28% and 3.66%, respectively. The efficacy of the optimum micro/nanocapsules in healing cracks in a glass flake epoxy paint and corrosion protection was investigated by the salt spray test and Tafel polarization technique.
ISSN:1674-2001
2210-4291
DOI:10.1016/j.partic.2017.01.010