Loading…
Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal
To investigate the mesoscopic influence of surfactants on seepage law during water injection in coal seam, this paper innovatively establishes a fluid transport lattice Boltzmann (LBM) model by incorporating the seepage resistance generated from the porous media and external forces, which embodies t...
Saved in:
Published in: | Particuology 2025-01, Vol.96, p.1-13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the mesoscopic influence of surfactants on seepage law during water injection in coal seam, this paper innovatively establishes a fluid transport lattice Boltzmann (LBM) model by incorporating the seepage resistance generated from the porous media and external forces, which embodies the impact of wettability degree resulted from cocamidopropyl betaine (CAB), sodium dodecyl sulfate (SDS), and coconutt diethanol amide (CDEA) reagents at a 0.1% concentration. The main conclusions derived from this investigation are as follows: Firstly, as the lattice number in the X direction increases, the average seepage velocities in coal samples treated by deionized water, 0.1% CAB, 0.1% SDS, and 0.1% CDEA reagents (Nos. 1, 2, 3, and 4) exhibit three distinct stages: rapid decline, slow decline, and steady decline; in comparison to raw coal sample, modified coal samples demonstrate decreases of 20.84%, 33.91%, and 61.70%, respectively. Secondly, the critical values of displacement pressure difference exist during the phenomenon that modified reagents spread out in the entire flow channel, which are 3.5, 3.5, and 5.2 MPa, respectively, for coal samples Nos. 2, 3, and 4; this signifies that surpassing these critical values help prevent issues such as blank belts within the wetting range and insufficient dust control. Finally, at a displacement pressure difference of 0.01 (lattice unit), the average velocity ratios for samples (Nos. 2, 3, and 4) are 0.78, 0.56, and 0.37 (lattice unit), respectively; notably, the water flow velocities in modified coal samples are lower compared to that in raw coal sample, indicating that the addition of surfactants impede the seepage process of water injection in coal seam. Moreover, when the displacement pressure difference reaches 0.03 (lattice unit), the velocity ratio of CDEA-modified coal sample exceeds 100%; this means that when the displacement pressure difference surpasses 15.6 MPa, the water injection effect of CDEA-modified coal sample begins to be improved. These research findings offer a theoretical basis for enhancing water injection technology in coal mines.
[Display omitted]
•Microscale digital cores of coal treated by CAB, CDEA, and SDS were reconstructed.•With the water flow, average velocity exhibited the rapid, slow, and steady decline.•Critical values of pressure difference within surfactants spread out were determined.•When ΔP surpassed 15.6 MPa, water injection effect of CDEA-treated coal began improve. |
---|---|
ISSN: | 1674-2001 |
DOI: | 10.1016/j.partic.2024.10.014 |