Loading…

A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)

•5389 articles are examined to study the literature on off-line handwritten document analysis for the last thirty years.•Two techniques are applied: performance analysis and science mapping techniques.•The examination reveals the highest influential articles and the most productive authors and their...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition 2022-05, Vol.125, p.108513, Article 108513
Main Authors: Ruiz-Parrado, Victoria, Heradio, Ruben, Aranda-Escolastico, Ernesto, Sánchez, Ángel, Vélez, José F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3
cites cdi_FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3
container_end_page
container_issue
container_start_page 108513
container_title Pattern recognition
container_volume 125
creator Ruiz-Parrado, Victoria
Heradio, Ruben
Aranda-Escolastico, Ernesto
Sánchez, Ángel
Vélez, José F.
description •5389 articles are examined to study the literature on off-line handwritten document analysis for the last thirty years.•Two techniques are applied: performance analysis and science mapping techniques.•The examination reveals the highest influential articles and the most productive authors and their collaboration networks.•The examination reveals which countries and institutions are leading research and the largest publishers.•The most relevant research topics and their evolution are studied and discussed. [Display omitted] Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.
doi_str_mv 10.1016/j.patcog.2021.108513
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_patcog_2021_108513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320321006890</els_id><sourcerecordid>S0031320321006890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouK6-gYce9dA6k7TN9iIsi_9gwYtevIQ0nWiWbrskWWVvvoNv6JPYpYI3YWBg5vs-Pn6MnSNkCFherbKNjqZ_zThwHE6zAsUBm-BMirTAnB-yCYDAVHAQx-wkhBUAyuExYS_zpHZ16_o1Re9Mojvd7oILSW-HsWnrOkredNd8eBcjdUnTm-2auvinbF0kr-PWU3KBVQXfn19DD7g8ZUdWt4HOfveUPd_ePC3u0-Xj3cNivkyNKHhMDRR1w6XOhdEIZGRpoIYcqqbKZW1BS5PPcktYyApBkrTWlpIaLMHwQSGmLB9zje9D8GTVxru19juFoPZ81EqNfNSejxr5DLbr0UZDt3dHXgXjqDPUOE8mqqZ3_wf8AKrycOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)</title><source>Elsevier</source><creator>Ruiz-Parrado, Victoria ; Heradio, Ruben ; Aranda-Escolastico, Ernesto ; Sánchez, Ángel ; Vélez, José F.</creator><creatorcontrib>Ruiz-Parrado, Victoria ; Heradio, Ruben ; Aranda-Escolastico, Ernesto ; Sánchez, Ángel ; Vélez, José F.</creatorcontrib><description>•5389 articles are examined to study the literature on off-line handwritten document analysis for the last thirty years.•Two techniques are applied: performance analysis and science mapping techniques.•The examination reveals the highest influential articles and the most productive authors and their collaboration networks.•The examination reveals which countries and institutions are leading research and the largest publishers.•The most relevant research topics and their evolution are studied and discussed. [Display omitted] Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2021.108513</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic document analysis ; Bibliometrics ; Off-line handwriting recognition ; Science mapping ; Signature verification ; Writer identification</subject><ispartof>Pattern recognition, 2022-05, Vol.125, p.108513, Article 108513</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3</citedby><cites>FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ruiz-Parrado, Victoria</creatorcontrib><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Aranda-Escolastico, Ernesto</creatorcontrib><creatorcontrib>Sánchez, Ángel</creatorcontrib><creatorcontrib>Vélez, José F.</creatorcontrib><title>A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)</title><title>Pattern recognition</title><description>•5389 articles are examined to study the literature on off-line handwritten document analysis for the last thirty years.•Two techniques are applied: performance analysis and science mapping techniques.•The examination reveals the highest influential articles and the most productive authors and their collaboration networks.•The examination reveals which countries and institutions are leading research and the largest publishers.•The most relevant research topics and their evolution are studied and discussed. [Display omitted] Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.</description><subject>Automatic document analysis</subject><subject>Bibliometrics</subject><subject>Off-line handwriting recognition</subject><subject>Science mapping</subject><subject>Signature verification</subject><subject>Writer identification</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KxDAQxoMouK6-gYce9dA6k7TN9iIsi_9gwYtevIQ0nWiWbrskWWVvvoNv6JPYpYI3YWBg5vs-Pn6MnSNkCFherbKNjqZ_zThwHE6zAsUBm-BMirTAnB-yCYDAVHAQx-wkhBUAyuExYS_zpHZ16_o1Re9Mojvd7oILSW-HsWnrOkredNd8eBcjdUnTm-2auvinbF0kr-PWU3KBVQXfn19DD7g8ZUdWt4HOfveUPd_ePC3u0-Xj3cNivkyNKHhMDRR1w6XOhdEIZGRpoIYcqqbKZW1BS5PPcktYyApBkrTWlpIaLMHwQSGmLB9zje9D8GTVxru19juFoPZ81EqNfNSejxr5DLbr0UZDt3dHXgXjqDPUOE8mqqZ3_wf8AKrycOI</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Ruiz-Parrado, Victoria</creator><creator>Heradio, Ruben</creator><creator>Aranda-Escolastico, Ernesto</creator><creator>Sánchez, Ángel</creator><creator>Vélez, José F.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202205</creationdate><title>A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)</title><author>Ruiz-Parrado, Victoria ; Heradio, Ruben ; Aranda-Escolastico, Ernesto ; Sánchez, Ángel ; Vélez, José F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automatic document analysis</topic><topic>Bibliometrics</topic><topic>Off-line handwriting recognition</topic><topic>Science mapping</topic><topic>Signature verification</topic><topic>Writer identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Parrado, Victoria</creatorcontrib><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Aranda-Escolastico, Ernesto</creatorcontrib><creatorcontrib>Sánchez, Ángel</creatorcontrib><creatorcontrib>Vélez, José F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Parrado, Victoria</au><au>Heradio, Ruben</au><au>Aranda-Escolastico, Ernesto</au><au>Sánchez, Ángel</au><au>Vélez, José F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)</atitle><jtitle>Pattern recognition</jtitle><date>2022-05</date><risdate>2022</risdate><volume>125</volume><spage>108513</spage><pages>108513-</pages><artnum>108513</artnum><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>•5389 articles are examined to study the literature on off-line handwritten document analysis for the last thirty years.•Two techniques are applied: performance analysis and science mapping techniques.•The examination reveals the highest influential articles and the most productive authors and their collaboration networks.•The examination reveals which countries and institutions are leading research and the largest publishers.•The most relevant research topics and their evolution are studied and discussed. [Display omitted] Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2021.108513</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2022-05, Vol.125, p.108513, Article 108513
issn 0031-3203
1873-5142
language eng
recordid cdi_crossref_primary_10_1016_j_patcog_2021_108513
source Elsevier
subjects Automatic document analysis
Bibliometrics
Off-line handwriting recognition
Science mapping
Signature verification
Writer identification
title A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bibliometric%20analysis%20of%20off-line%20handwritten%20document%20analysis%20literature%20(1990%E2%80%932020)&rft.jtitle=Pattern%20recognition&rft.au=Ruiz-Parrado,%20Victoria&rft.date=2022-05&rft.volume=125&rft.spage=108513&rft.pages=108513-&rft.artnum=108513&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2021.108513&rft_dat=%3Celsevier_cross%3ES0031320321006890%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-c05bd27a43ca10ec76c0b0409d947bf0a7c484fe1579107e7fff67ed160c247b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true