Loading…
Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles
•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating...
Saved in:
Published in: | Pattern recognition 2023-03, Vol.135, p.109158, Article 109158 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43 |
container_end_page | |
container_issue | |
container_start_page | 109158 |
container_title | Pattern recognition |
container_volume | 135 |
creator | Gutiérrez-López, Aitor González-Serrano, Francisco-Javier Figueiras-Vidal, Aníbal R. |
description | •Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance.
Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system. |
doi_str_mv | 10.1016/j.patcog.2022.109158 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_patcog_2022_109158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320322006379</els_id><sourcerecordid>S0031320322006379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</originalsourceid><addsrcrecordid>eNp9kMtOw0AMRUcIJErhD1jkB1LmkWTaDRJUvKRK3cB6NOM47UR5aTwF9e9JFNasLPv6XtmHsXvBV4KL4qFeDTZCf1hJLuU42oh8fcEWYq1VmotMXrIF50qkSnJ1zW6Ias6FHoUFc_sh-vbUJs_2jORtl8RjQDr2TUlJ1YckoLON7QDLBBpL5CsPNvq-S4bQuwZbSk7ku8OspvTjIxynHjvCdlygW3ZV2Ybw7q8u2dfry-f2Pd3t3z62T7sUVC5jagtZanA6d24jtSqxwAJK1ACy4BlILTNR6ayUG6ucWhegityiAMhyWaHL1JJlcy6EnihgZYbgWxvORnAzcTK1mTmZiZOZOY22x9mG423fHoMh8Dg97ANCNGXv_w_4BdvldiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><source>ScienceDirect Freedom Collection</source><creator>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</creator><creatorcontrib>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</creatorcontrib><description>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance.
Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2022.109158</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian framework ; Ensembles ; Imbalanced classification ; Label switching ; Rebalancing techniques</subject><ispartof>Pattern recognition, 2023-03, Vol.135, p.109158, Article 109158</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</citedby><cites>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</cites><orcidid>0000-0001-7514-7451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gutiérrez-López, Aitor</creatorcontrib><creatorcontrib>González-Serrano, Francisco-Javier</creatorcontrib><creatorcontrib>Figueiras-Vidal, Aníbal R.</creatorcontrib><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><title>Pattern recognition</title><description>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance.
Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</description><subject>Bayesian framework</subject><subject>Ensembles</subject><subject>Imbalanced classification</subject><subject>Label switching</subject><subject>Rebalancing techniques</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOw0AMRUcIJErhD1jkB1LmkWTaDRJUvKRK3cB6NOM47UR5aTwF9e9JFNasLPv6XtmHsXvBV4KL4qFeDTZCf1hJLuU42oh8fcEWYq1VmotMXrIF50qkSnJ1zW6Ias6FHoUFc_sh-vbUJs_2jORtl8RjQDr2TUlJ1YckoLON7QDLBBpL5CsPNvq-S4bQuwZbSk7ku8OspvTjIxynHjvCdlygW3ZV2Ybw7q8u2dfry-f2Pd3t3z62T7sUVC5jagtZanA6d24jtSqxwAJK1ACy4BlILTNR6ayUG6ucWhegityiAMhyWaHL1JJlcy6EnihgZYbgWxvORnAzcTK1mTmZiZOZOY22x9mG423fHoMh8Dg97ANCNGXv_w_4BdvldiI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gutiérrez-López, Aitor</creator><creator>González-Serrano, Francisco-Javier</creator><creator>Figueiras-Vidal, Aníbal R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7514-7451</orcidid></search><sort><creationdate>202303</creationdate><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><author>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian framework</topic><topic>Ensembles</topic><topic>Imbalanced classification</topic><topic>Label switching</topic><topic>Rebalancing techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez-López, Aitor</creatorcontrib><creatorcontrib>González-Serrano, Francisco-Javier</creatorcontrib><creatorcontrib>Figueiras-Vidal, Aníbal R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez-López, Aitor</au><au>González-Serrano, Francisco-Javier</au><au>Figueiras-Vidal, Aníbal R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</atitle><jtitle>Pattern recognition</jtitle><date>2023-03</date><risdate>2023</risdate><volume>135</volume><spage>109158</spage><pages>109158-</pages><artnum>109158</artnum><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance.
Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2022.109158</doi><orcidid>https://orcid.org/0000-0001-7514-7451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2023-03, Vol.135, p.109158, Article 109158 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_patcog_2022_109158 |
source | ScienceDirect Freedom Collection |
subjects | Bayesian framework Ensembles Imbalanced classification Label switching Rebalancing techniques |
title | Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20Bayesian%20thresholds%20for%20rebalanced%20classification%20problems%20using%20class-switching%20ensembles&rft.jtitle=Pattern%20recognition&rft.au=Guti%C3%A9rrez-L%C3%B3pez,%20Aitor&rft.date=2023-03&rft.volume=135&rft.spage=109158&rft.pages=109158-&rft.artnum=109158&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2022.109158&rft_dat=%3Celsevier_cross%3ES0031320322006379%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |