Loading…

Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles

•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition 2023-03, Vol.135, p.109158, Article 109158
Main Authors: Gutiérrez-López, Aitor, González-Serrano, Francisco-Javier, Figueiras-Vidal, Aníbal R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43
cites cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43
container_end_page
container_issue
container_start_page 109158
container_title Pattern recognition
container_volume 135
creator Gutiérrez-López, Aitor
González-Serrano, Francisco-Javier
Figueiras-Vidal, Aníbal R.
description •Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance. Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.
doi_str_mv 10.1016/j.patcog.2022.109158
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_patcog_2022_109158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320322006379</els_id><sourcerecordid>S0031320322006379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</originalsourceid><addsrcrecordid>eNp9kMtOw0AMRUcIJErhD1jkB1LmkWTaDRJUvKRK3cB6NOM47UR5aTwF9e9JFNasLPv6XtmHsXvBV4KL4qFeDTZCf1hJLuU42oh8fcEWYq1VmotMXrIF50qkSnJ1zW6Ias6FHoUFc_sh-vbUJs_2jORtl8RjQDr2TUlJ1YckoLON7QDLBBpL5CsPNvq-S4bQuwZbSk7ku8OspvTjIxynHjvCdlygW3ZV2Ybw7q8u2dfry-f2Pd3t3z62T7sUVC5jagtZanA6d24jtSqxwAJK1ACy4BlILTNR6ayUG6ucWhegityiAMhyWaHL1JJlcy6EnihgZYbgWxvORnAzcTK1mTmZiZOZOY22x9mG423fHoMh8Dg97ANCNGXv_w_4BdvldiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><source>ScienceDirect Freedom Collection</source><creator>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</creator><creatorcontrib>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</creatorcontrib><description>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance. Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2022.109158</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian framework ; Ensembles ; Imbalanced classification ; Label switching ; Rebalancing techniques</subject><ispartof>Pattern recognition, 2023-03, Vol.135, p.109158, Article 109158</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</citedby><cites>FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</cites><orcidid>0000-0001-7514-7451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gutiérrez-López, Aitor</creatorcontrib><creatorcontrib>González-Serrano, Francisco-Javier</creatorcontrib><creatorcontrib>Figueiras-Vidal, Aníbal R.</creatorcontrib><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><title>Pattern recognition</title><description>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance. Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</description><subject>Bayesian framework</subject><subject>Ensembles</subject><subject>Imbalanced classification</subject><subject>Label switching</subject><subject>Rebalancing techniques</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOw0AMRUcIJErhD1jkB1LmkWTaDRJUvKRK3cB6NOM47UR5aTwF9e9JFNasLPv6XtmHsXvBV4KL4qFeDTZCf1hJLuU42oh8fcEWYq1VmotMXrIF50qkSnJ1zW6Ias6FHoUFc_sh-vbUJs_2jORtl8RjQDr2TUlJ1YckoLON7QDLBBpL5CsPNvq-S4bQuwZbSk7ku8OspvTjIxynHjvCdlygW3ZV2Ybw7q8u2dfry-f2Pd3t3z62T7sUVC5jagtZanA6d24jtSqxwAJK1ACy4BlILTNR6ayUG6ucWhegityiAMhyWaHL1JJlcy6EnihgZYbgWxvORnAzcTK1mTmZiZOZOY22x9mG423fHoMh8Dg97ANCNGXv_w_4BdvldiI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gutiérrez-López, Aitor</creator><creator>González-Serrano, Francisco-Javier</creator><creator>Figueiras-Vidal, Aníbal R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7514-7451</orcidid></search><sort><creationdate>202303</creationdate><title>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</title><author>Gutiérrez-López, Aitor ; González-Serrano, Francisco-Javier ; Figueiras-Vidal, Aníbal R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian framework</topic><topic>Ensembles</topic><topic>Imbalanced classification</topic><topic>Label switching</topic><topic>Rebalancing techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez-López, Aitor</creatorcontrib><creatorcontrib>González-Serrano, Francisco-Javier</creatorcontrib><creatorcontrib>Figueiras-Vidal, Aníbal R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez-López, Aitor</au><au>González-Serrano, Francisco-Javier</au><au>Figueiras-Vidal, Aníbal R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles</atitle><jtitle>Pattern recognition</jtitle><date>2023-03</date><risdate>2023</risdate><volume>135</volume><spage>109158</spage><pages>109158-</pages><artnum>109158</artnum><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>•Imbalance can be mitigated by rebalancing (costs, population) or ensemble learning.•Asymmetric label switching creates diversity in ensemble learning.•Rebalancing and switching can be combined in a principled way.•Optimum decision thresholds for these combinations are analytically derived.•A gating network aggregating the learners contributions improves performance. Asymmetric label switching is an effective and principled method for creating a diverse ensemble of learners for imbalanced classification problems. This technique can be combined with other rebalancing mechanisms, such as those based on cost policies or class proportion modifications. In this study, and under the Bayesian theory framework, we specify the optimal decision thresholds for the combination of these mechanisms. In addition, we propose using a gating network to aggregate the learners contributions as an additional mechanism to improve the overall performance of the system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2022.109158</doi><orcidid>https://orcid.org/0000-0001-7514-7451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2023-03, Vol.135, p.109158, Article 109158
issn 0031-3203
1873-5142
language eng
recordid cdi_crossref_primary_10_1016_j_patcog_2022_109158
source ScienceDirect Freedom Collection
subjects Bayesian framework
Ensembles
Imbalanced classification
Label switching
Rebalancing techniques
title Optimum Bayesian thresholds for rebalanced classification problems using class-switching ensembles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20Bayesian%20thresholds%20for%20rebalanced%20classification%20problems%20using%20class-switching%20ensembles&rft.jtitle=Pattern%20recognition&rft.au=Guti%C3%A9rrez-L%C3%B3pez,%20Aitor&rft.date=2023-03&rft.volume=135&rft.spage=109158&rft.pages=109158-&rft.artnum=109158&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2022.109158&rft_dat=%3Celsevier_cross%3ES0031320322006379%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a62d7cb75bb9273de6e6cde7cc2604c27241f74d29a3b386c365ae1cc452feb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true