Loading…

Expansion window local alignment weighted network for fine-grained sketch-based image retrieval

Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Networ...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition 2023-12, Vol.144, p.109892, Article 109892
Main Authors: Zhang, Zi-Chao, Xie, Zhen-Yu, Chen, Zhen-Duo, Zhan, Yu-Wei, Luo, Xin, Xu, Xin-Shun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23
cites cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23
container_end_page
container_issue
container_start_page 109892
container_title Pattern recognition
container_volume 144
creator Zhang, Zi-Chao
Xie, Zhen-Yu
Chen, Zhen-Duo
Zhan, Yu-Wei
Luo, Xin
Xu, Xin-Shun
description Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method. •Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.
doi_str_mv 10.1016/j.patcog.2023.109892
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_patcog_2023_109892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320323005903</els_id><sourcerecordid>S0031320323005903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAURL0AiVL4Axb-gRQ_4jw2SKgqD6kSG1hbjn2Tuk3tyrYa-HtchTWr0b2jGY0OQg-UrCih1eN-dVJJ-2HFCOP51TYtu0ILQjgtOCP8Bt3GuCeE1rRkCyQ33yflovUOT9YZP-HRazViNdrBHcElPIEddgkMdpAmHw649wH31kExBJXF4HiApHdFp2I-7FENgAOkYOGsxjt03asxwv2fLtHXy-Zz_VZsP17f18_bQnNSpaI2ZVcK2grelXmaEWWvGkYoVaJtmO4YN5wDq3sQoqFaVU1XESZUVVct4dleonLu1cHHGKCXp5CnhB9JibyAkXs5g5EXMHIGk2NPcwzytrOFIKO24DQYG0Anabz9v-AXxxBw2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><source>ScienceDirect Journals</source><creator>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</creator><creatorcontrib>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</creatorcontrib><description>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method. •Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</description><identifier>ISSN: 0031-3203</identifier><identifier>DOI: 10.1016/j.patcog.2023.109892</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attention mechanism ; Expansion window ; Fine-grained sketch-based image retrieval ; Local feature</subject><ispartof>Pattern recognition, 2023-12, Vol.144, p.109892, Article 109892</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</citedby><cites>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</cites><orcidid>0000-0003-1365-4401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Zhang, Zi-Chao</creatorcontrib><creatorcontrib>Xie, Zhen-Yu</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Zhan, Yu-Wei</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><title>Pattern recognition</title><description>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method. •Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</description><subject>Attention mechanism</subject><subject>Expansion window</subject><subject>Fine-grained sketch-based image retrieval</subject><subject>Local feature</subject><issn>0031-3203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURL0AiVL4Axb-gRQ_4jw2SKgqD6kSG1hbjn2Tuk3tyrYa-HtchTWr0b2jGY0OQg-UrCih1eN-dVJJ-2HFCOP51TYtu0ILQjgtOCP8Bt3GuCeE1rRkCyQ33yflovUOT9YZP-HRazViNdrBHcElPIEddgkMdpAmHw649wH31kExBJXF4HiApHdFp2I-7FENgAOkYOGsxjt03asxwv2fLtHXy-Zz_VZsP17f18_bQnNSpaI2ZVcK2grelXmaEWWvGkYoVaJtmO4YN5wDq3sQoqFaVU1XESZUVVct4dleonLu1cHHGKCXp5CnhB9JibyAkXs5g5EXMHIGk2NPcwzytrOFIKO24DQYG0Anabz9v-AXxxBw2w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhang, Zi-Chao</creator><creator>Xie, Zhen-Yu</creator><creator>Chen, Zhen-Duo</creator><creator>Zhan, Yu-Wei</creator><creator>Luo, Xin</creator><creator>Xu, Xin-Shun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1365-4401</orcidid></search><sort><creationdate>202312</creationdate><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><author>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention mechanism</topic><topic>Expansion window</topic><topic>Fine-grained sketch-based image retrieval</topic><topic>Local feature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zi-Chao</creatorcontrib><creatorcontrib>Xie, Zhen-Yu</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Zhan, Yu-Wei</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zi-Chao</au><au>Xie, Zhen-Yu</au><au>Chen, Zhen-Duo</au><au>Zhan, Yu-Wei</au><au>Luo, Xin</au><au>Xu, Xin-Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</atitle><jtitle>Pattern recognition</jtitle><date>2023-12</date><risdate>2023</risdate><volume>144</volume><spage>109892</spage><pages>109892-</pages><artnum>109892</artnum><issn>0031-3203</issn><abstract>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method. •Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2023.109892</doi><orcidid>https://orcid.org/0000-0003-1365-4401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2023-12, Vol.144, p.109892, Article 109892
issn 0031-3203
language eng
recordid cdi_crossref_primary_10_1016_j_patcog_2023_109892
source ScienceDirect Journals
subjects Attention mechanism
Expansion window
Fine-grained sketch-based image retrieval
Local feature
title Expansion window local alignment weighted network for fine-grained sketch-based image retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansion%20window%20local%20alignment%20weighted%20network%20for%20fine-grained%20sketch-based%20image%20retrieval&rft.jtitle=Pattern%20recognition&rft.au=Zhang,%20Zi-Chao&rft.date=2023-12&rft.volume=144&rft.spage=109892&rft.pages=109892-&rft.artnum=109892&rft.issn=0031-3203&rft_id=info:doi/10.1016/j.patcog.2023.109892&rft_dat=%3Celsevier_cross%3ES0031320323005903%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true