Loading…
Expansion window local alignment weighted network for fine-grained sketch-based image retrieval
Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Networ...
Saved in:
Published in: | Pattern recognition 2023-12, Vol.144, p.109892, Article 109892 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23 |
container_end_page | |
container_issue | |
container_start_page | 109892 |
container_title | Pattern recognition |
container_volume | 144 |
creator | Zhang, Zi-Chao Xie, Zhen-Yu Chen, Zhen-Duo Zhan, Yu-Wei Luo, Xin Xu, Xin-Shun |
description | Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method.
•Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments. |
doi_str_mv | 10.1016/j.patcog.2023.109892 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_patcog_2023_109892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320323005903</els_id><sourcerecordid>S0031320323005903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</originalsourceid><addsrcrecordid>eNp9kMtOwzAURL0AiVL4Axb-gRQ_4jw2SKgqD6kSG1hbjn2Tuk3tyrYa-HtchTWr0b2jGY0OQg-UrCih1eN-dVJJ-2HFCOP51TYtu0ILQjgtOCP8Bt3GuCeE1rRkCyQ33yflovUOT9YZP-HRazViNdrBHcElPIEddgkMdpAmHw649wH31kExBJXF4HiApHdFp2I-7FENgAOkYOGsxjt03asxwv2fLtHXy-Zz_VZsP17f18_bQnNSpaI2ZVcK2grelXmaEWWvGkYoVaJtmO4YN5wDq3sQoqFaVU1XESZUVVct4dleonLu1cHHGKCXp5CnhB9JibyAkXs5g5EXMHIGk2NPcwzytrOFIKO24DQYG0Anabz9v-AXxxBw2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><source>ScienceDirect Journals</source><creator>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</creator><creatorcontrib>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</creatorcontrib><description>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method.
•Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</description><identifier>ISSN: 0031-3203</identifier><identifier>DOI: 10.1016/j.patcog.2023.109892</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attention mechanism ; Expansion window ; Fine-grained sketch-based image retrieval ; Local feature</subject><ispartof>Pattern recognition, 2023-12, Vol.144, p.109892, Article 109892</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</citedby><cites>FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</cites><orcidid>0000-0003-1365-4401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Zhang, Zi-Chao</creatorcontrib><creatorcontrib>Xie, Zhen-Yu</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Zhan, Yu-Wei</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><title>Pattern recognition</title><description>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method.
•Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</description><subject>Attention mechanism</subject><subject>Expansion window</subject><subject>Fine-grained sketch-based image retrieval</subject><subject>Local feature</subject><issn>0031-3203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURL0AiVL4Axb-gRQ_4jw2SKgqD6kSG1hbjn2Tuk3tyrYa-HtchTWr0b2jGY0OQg-UrCih1eN-dVJJ-2HFCOP51TYtu0ILQjgtOCP8Bt3GuCeE1rRkCyQ33yflovUOT9YZP-HRazViNdrBHcElPIEddgkMdpAmHw649wH31kExBJXF4HiApHdFp2I-7FENgAOkYOGsxjt03asxwv2fLtHXy-Zz_VZsP17f18_bQnNSpaI2ZVcK2grelXmaEWWvGkYoVaJtmO4YN5wDq3sQoqFaVU1XESZUVVct4dleonLu1cHHGKCXp5CnhB9JibyAkXs5g5EXMHIGk2NPcwzytrOFIKO24DQYG0Anabz9v-AXxxBw2w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhang, Zi-Chao</creator><creator>Xie, Zhen-Yu</creator><creator>Chen, Zhen-Duo</creator><creator>Zhan, Yu-Wei</creator><creator>Luo, Xin</creator><creator>Xu, Xin-Shun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1365-4401</orcidid></search><sort><creationdate>202312</creationdate><title>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</title><author>Zhang, Zi-Chao ; Xie, Zhen-Yu ; Chen, Zhen-Duo ; Zhan, Yu-Wei ; Luo, Xin ; Xu, Xin-Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention mechanism</topic><topic>Expansion window</topic><topic>Fine-grained sketch-based image retrieval</topic><topic>Local feature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zi-Chao</creatorcontrib><creatorcontrib>Xie, Zhen-Yu</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Zhan, Yu-Wei</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zi-Chao</au><au>Xie, Zhen-Yu</au><au>Chen, Zhen-Duo</au><au>Zhan, Yu-Wei</au><au>Luo, Xin</au><au>Xu, Xin-Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expansion window local alignment weighted network for fine-grained sketch-based image retrieval</atitle><jtitle>Pattern recognition</jtitle><date>2023-12</date><risdate>2023</risdate><volume>144</volume><spage>109892</spage><pages>109892-</pages><artnum>109892</artnum><issn>0031-3203</issn><abstract>Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) is a worthwhile task, which can be useful in many scenarios like recommendation systems, receiving a great deal of attention. In this study, we analyze challenges faced in FG-SBIR and propose a novel Expansion Window Local Alignment Weighted Network (EWLAW-Net). Specifically, it contains two main components: the Expansion Window Local Alignment module (EWLA) and the Local Weighted Fusion module (LWF). The EWLA module adopts an expansion window mechanism to align local features extracted from the backbone with the same semantic meaning between photos and sketches. The LWF module assigns weights to each local feature of the sketch after evaluating their importance and fuses them to calculate the similarity between the sketch and photos for retrieval. Experiments are conducted on five datasets and the results demonstrate the effectiveness of the proposed method.
•Expansion Window Local Alignment Weighted Network is proposed for FG-SBIR.•Expansion Window Local Alignment module solves the spatial misalignment problem.•Local Weighted Fusion module evaluates the importance of local features.•EWLAW-Net’s superiority is demonstrated by ample experiments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2023.109892</doi><orcidid>https://orcid.org/0000-0003-1365-4401</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2023-12, Vol.144, p.109892, Article 109892 |
issn | 0031-3203 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_patcog_2023_109892 |
source | ScienceDirect Journals |
subjects | Attention mechanism Expansion window Fine-grained sketch-based image retrieval Local feature |
title | Expansion window local alignment weighted network for fine-grained sketch-based image retrieval |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expansion%20window%20local%20alignment%20weighted%20network%20for%20fine-grained%20sketch-based%20image%20retrieval&rft.jtitle=Pattern%20recognition&rft.au=Zhang,%20Zi-Chao&rft.date=2023-12&rft.volume=144&rft.spage=109892&rft.pages=109892-&rft.artnum=109892&rft.issn=0031-3203&rft_id=info:doi/10.1016/j.patcog.2023.109892&rft_dat=%3Celsevier_cross%3ES0031320323005903%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-7d4b451953b4017d54fa82011a5982cb23d33e27fe5581ca68b6025a676903b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |