Loading…
Validation criteria for enhanced fuzzy clustering
We introduce two new criterions for validation of results obtained from recent novel-clustering algorithm, improved fuzzy clustering (IFC) to be used to find patterns in regression and classification type datasets, separately. IFC algorithm calculates membership values that are used as additional pr...
Saved in:
Published in: | Pattern recognition letters 2008-01, Vol.29 (2), p.97-108 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce two new criterions for validation of results obtained from recent novel-clustering algorithm, improved fuzzy clustering (IFC) to be used to find patterns in regression and classification type datasets, separately. IFC algorithm calculates membership values that are used as additional predictors to form fuzzy decision functions for each cluster. Proposed validity criterions are based on the ratio of compactness to separability of clusters. The optimum compactness of a cluster is represented with average distances between every object and cluster centers, and total estimation error from their fuzzy decision functions. The separability is based on a conditional ratio between the similarities between cluster representatives and similarities between fuzzy decision surfaces of each cluster. The performance of the proposed validity criterions are compared to other structurally similar cluster validity indexes using datasets from different domains. The results indicate that the new cluster validity functions are useful criterions when selecting parameters of IFC models. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/j.patrec.2007.08.017 |