Loading…
Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms
Computer aided diagnosis (CADx) systems for digitized mammograms solve the problem of classification between benign and malignant tissues while studies have shown that using only a subset of features generated from the mammograms can yield higher classification accuracy. To this end, we propose a mu...
Saved in:
Published in: | Pattern recognition letters 2009-12, Vol.30 (16), p.1489-1495 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computer aided diagnosis (CADx) systems for digitized mammograms solve the problem of classification between benign and malignant tissues while studies have shown that using only a subset of features generated from the mammograms can yield higher classification accuracy. To this end, we propose a mutual information-based Support Vector Machine Recursive Feature Elimination (SVM-RFE) as the classification method with feature selection in this paper. We have conducted extensive experiments on publicly available mammographic data and the obtained results indicate that the proposed method outperforms other SVM and SVM-RFE-based methods. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/j.patrec.2009.06.012 |