Loading…
Text line extraction strategy for palm leaf manuscripts
Text line segmentation is an important step in the historical document image analysis pipeline to supply useful information for recognition, keyword spotting and indexing. Many handcrafted-based and learning-based approaches have been developed to cope with text line extraction challenges. In this w...
Saved in:
Published in: | Pattern recognition letters 2023-10, Vol.174, p.10-16 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Text line segmentation is an important step in the historical document image analysis pipeline to supply useful information for recognition, keyword spotting and indexing. Many handcrafted-based and learning-based approaches have been developed to cope with text line extraction challenges. In this work we present a hybrid technique which combines a convolutional-based denoising task and heuristic Seam Carving framework. We propose the following changes to the original Seam Carving: (1) We applied adaptive slice to anticipate miss-extraction on a short text during medial seam computation. (2) We applied a triple smoothing to find the best local maxima of the smoothed horizontal projection profile which represents candidate medial seams. (3) We utilized five post-processing steps aimed at reconstructing a more precise medial seam. Three different palm leaf data sets: old Sundanese, old Balinese, and old Khmer, have been used to compare Convolutional Seam Carving (CSC) to several baseline methods, including the original Seam Carving. Experimental results show that the proposed method outperforms other current handcrafted-based baselines on all three palm leaf manuscript (PLM) data sets. On the old Sundanese data sets, CSC can produce a significant improvement of the performance rate compared to all other baseline approaches, and it also enhance the measurement on old Balinese and old Khmer datasets. In the ablation study, we discovered that a foreground extraction step is not only able to reduce noises and color degradation but also provide better separation of text region. Following that, an adaptive slice and triple smoothing approach contribute to solve the text length variation problem. Finally, post-processing steps were effective in connecting discontinuous medial seam. The code has been published in https://github.com/erickpaulus/text-line-segmentation.
•Performance of the medial seam extraction increase while applying triple smoothing.•The adaptive slice contributes to improved medial seams segmentation.•Denoising increases text line extraction results by offering a cleaner text area.•The post-processing steps were successful in bridging the discontinuous medial seam. |
---|---|
ISSN: | 0167-8655 1872-7344 |
DOI: | 10.1016/j.patrec.2023.08.007 |