Loading…
An experimental study of stress changes induced by reservoir depletion under true triaxial stress loading conditions
The reduction of pore pressure during reservoir production alters the initial stress state within the reservoir and the surrounding rocks. This stress variation is responsible for many problems encountered during production (e.g. fault reactivation, casing deformation). In this investigation, a newl...
Saved in:
Published in: | Journal of petroleum science & engineering 2018-12, Vol.171, p.1366-1377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reduction of pore pressure during reservoir production alters the initial stress state within the reservoir and the surrounding rocks. This stress variation is responsible for many problems encountered during production (e.g. fault reactivation, casing deformation). In this investigation, a newly designed True Triaxial Stress Loading and Pore Pressure Applying Apparatus (TTSL-PPAA) was applied to study the coupling of pore pressure drawdown and reservoir stress changes under actual field conditions. The objective was to overcome the shortcomings of commonly employed depletion testing under conventional triaxial conditions, which assumes that both horizontal stress components are equal. The depletion simulations were performed by decreasing the pore pressure and under applying constant vertical and keeping zero horizontal strains, i.e. uniaxial strain boundary conditions. The results showed that both horizontal stresses decrease with a linear trend with pore pressure depletion. The reduction rates of minimum and maximum horizontal stresses, however, are not uniform. The rate of maximum horizontal stress reduction is higher than the minimum horizontal stress component. Moreover, the pore pressure/stress coupling intensity is dependent on the initial, pre-production, stress state. By increasing the initial vertical stress, and therefore, decreasing the ratios of horizontal to vertical stress, (referred to as KH = σH/σV and Kh = σh/σV), the effect of pore pressure depletion on in situ stress components was decreased. The obtained test results imply that, in addition to stress magnitude changes, the stress regime might be locally changed by production due to pore pressure/stress coupling. Furthermore, the rock sample failure in some depletion tests indicates that the pore pressure/stress coupling can be used to describe the production induced seismicity reported in hydrocarbon reservoirs worldwide.
•The paper describes the development of a new True Triaxial Stress Loading and Pore Pressure Applying Apparatus (TTSL-PPAA).•The TTSL-PPAA system is employed to demonstrate the depletion mechanisms associate with oil reservoirs.•The depletion simulations were conducted to show the coupled nature of pore pressure and in situ stress filed.•Due to pore pressure reduction both horizontal stress components start to decrease in a linear trend. |
---|---|
ISSN: | 0920-4105 1873-4715 |
DOI: | 10.1016/j.petrol.2018.08.047 |