Loading…

Gradient descent algorithm to optimize the offshore scale squeeze treatments

Scale deposition is one of the serious oilfield chemical issues which may lead to a range of downhole and production problems, including the reduction of well productivity index. Scale Inhibitor (SI) squeeze treatments are one of the most common techniques which are applied to prevent downhole scali...

Full description

Saved in:
Bibliographic Details
Published in:Journal of petroleum science & engineering 2022-01, Vol.208, p.109469, Article 109469
Main Authors: Azari, Vahid, Vazquez, Oscar, Mackay, Eric, Sorbie, Ken, Jordan, Myles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scale deposition is one of the serious oilfield chemical issues which may lead to a range of downhole and production problems, including the reduction of well productivity index. Scale Inhibitor (SI) squeeze treatments are one of the most common techniques which are applied to prevent downhole scaling in production wells. A treatment typically consists of four stages, (i) a preflush, to condition the rock surface; (ii) a main treatment, where a batch of high concentration inhibitor is bullheaded into the formation; (iii) an overflush, to displace the scale inhibitor slug deeper into the near-well formation, and (iv) a shut-in stage to allow further inhibitor retention before putting the well back on production. During this backflow period, scale inhibitor is released from the rock surface into the produced water, and the scale deposition is prevented if the inhibitor concentration is above some specified Minimum Inhibitor Concentration (MIC). Due to logistic constraints in offshore wells, it is often required that the scale protection afforded by a squeeze treatment should last for some fixed design lifetime until the next treatment becomes available. For example, in the North Sea sector, well operations are often based on an annual treatment design. This paper presents a methodology to optimize the squeeze treatment design for a fixed target lifetime and this is applied for two offshore well squeeze treatments. This approach allows us to account for the operational constraints in the squeeze optimization process to treat a fixed volume of produced water, while minimizing the inhibitor neat volume and the total pumping time. A sensitivity study was performed on the inhibitor concentration, where the results showed that deploying a smaller inhibitor slug but with higher concentration is more effective than a larger slug with lower concentration, assuming a fixed volume of inhibitor and injected water. Therefore, it is recommended that the inhibitor is deployed at the maximum possible concentration, while avoiding the potential for any formation damage. Considering the same inhibitor slug (volume and concentration), this study suggests that the squeeze lifetime continuously increases with the overflush volume. This implies that the lifetime function is differentiable with respect to the overflush, and thus a gradient-based optimization algorithm, specifically the Gradient Descent (GD) may be applied to find the exact overflush volume resulting in the target
ISSN:0920-4105
1873-4715
DOI:10.1016/j.petrol.2021.109469