Loading…
Manifestations of surfactant-polymer flooding for successful field applications in carbonates under harsh conditions: A comprehensive review
Most oil fields today are mature, and the majority of the reservoirs in the Middle East are carbonate rocks characterized by high temperature high salinity (HTHS), heterogeneous mineral composition, and natural fractures. Enhanced oil recovery (EOR) methods are used for boosting oil recovery from th...
Saved in:
Published in: | Journal of petroleum science & engineering 2023-01, Vol.220, p.111243, Article 111243 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most oil fields today are mature, and the majority of the reservoirs in the Middle East are carbonate rocks characterized by high temperature high salinity (HTHS), heterogeneous mineral composition, and natural fractures. Enhanced oil recovery (EOR) methods are used for boosting oil recovery from the aged reservoirs beyond primary and secondary recovery stages. Nevertheless, it can be a challenging task to employ EOR techniques in these aged carbonate reservoirs. This is because carbonate reservoirs have mixed-to-oil-wet wettability with temperatures exceeding 85 °C and salinity of over 100,000 ppm, which renders secondary EOR-methods such as waterflooding ineffective. Therefore, even though carbonate reservoirs contain 60–65% of world's remaining oil, with immense intrinsic economic prospects, the oil recovery process from carbonate reservoirs remains a considerable challenge. Chemical-EOR (cEOR) techniques, like SP based cEOR, have shown marked promise in improved oil recovery, mainly from clastic reservoirs with medium temperature and salinity, unlike carbonate reservoirs. During SP-floodings, the surfactants get adsorbed due to the mineral composition of the carbonate rocks, and polymer degradation occurs due to HTHS conditions. Consequently, new surfactants and polymers have been structurally conformed and tested to improve their robustness and related recovery efficacy. For instance, Guerbet alkoxy-carboxylate surfactants demonstrated good stability at temperatures over 100 °C and salinities up-to 275,000 ppm, yielding tertiary recovery of 94.5% and low adsorption of 0.086 mg/g of rock. The cationic Gemini surfactants, zwitterionic or amphoteric class of surfactants are also suitable for HTHS carbonates. Besides, effective biosurfactants sourced from plant such as, soy, corn, etc., are non-toxic and readily biodegradable. The hydrophobically associating polyacrylamide (HAPAM) and its modified nanocomposite derivative can act as replacement surfactants, due to their wettability altering and robust characteristics. Novel polymers viz., NVP-based, novel smart thermoviscosifying polymers (TVP), soft microgel, and sulfonated polymers, are also relevant to HTHS carbonate applications. Xanthan gum, scleroglucan, and schizophyllan biopolymers have been noted to resist HTHS and low permeability conditions, requiring lower concentration and having low adsorption. Recent surfactant-polymer (SP) formulations also can be applicable for HTHS carbonates with excell |
---|---|
ISSN: | 0920-4105 1873-4715 |
DOI: | 10.1016/j.petrol.2022.111243 |