Loading…
Standardization in Cryogenic Insulation Systems Testing and Performance Data
The close relationship between industrial energy use and cryogenics drives the need for optimized thermal insulation systems. Emerging cryofuels usage is enabled by adequate isolation of the liquid hydrogen or liquefied natural gas from the ambient environment. Thermal performance data for the total...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The close relationship between industrial energy use and cryogenics drives the need for optimized thermal insulation systems. Emerging cryofuels usage is enabled by adequate isolation of the liquid hydrogen or liquefied natural gas from the ambient environment. Thermal performance data for the total insulation system, as rendered, are essential for both engineering designs and cost-benefit decisions involving comparisons among alternatives. These data are obtained through rigorous testing with suitable apparatus and repeatable methods. Properly defined terminology, analysis, and reporting are also vital. Advances in cryogenic insulation test apparatus and methods have led to the recent addition of two new technical standards of ASTM International: C1774 - Standard Guide for Thermal Performance Testing of Cryogenic InsulationSystems and C740 - Standard Guide for Evacuated Reflective Cryogenic Insulation. Among the different techniques described in the new standards is the cylindrical boiloff calorimeter for absolute heat measurement over the full range of vacuum pressure conditions. The details of this apparatus, test method, and data analysis are given. Benchmark thermal performance data, including effective thermal conductivity (ke) and heat flux (q) for the boundary temperatures of 293K and 77K, are given for a number of different multilayer insulation (MLI) systems in comparison with data for other commonly-used insulation systems including perlite powder, fiberglass, polyurethane foam, and aerogels. |
---|---|
ISSN: | 1875-3892 1875-3892 |
DOI: | 10.1016/j.phpro.2015.06.205 |