Loading…
0.234: The Myth of a Universal Acceptance Ratio for Monte Carlo Simulations
Two well-known papers by Gelman, Roberts, and Gilks have proposed the application of the results of an interesting mathematical proof to practical optimizations of Markov Chain Monte Carlo computer simulations. In particular, they advocated tuning the simulation parameters to select an acceptance ra...
Saved in:
Published in: | Physics procedia 2015, Vol.68, p.120-124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two well-known papers by Gelman, Roberts, and Gilks have proposed the application of the results of an interesting mathematical proof to practical optimizations of Markov Chain Monte Carlo computer simulations. In particular, they advocated tuning the simulation parameters to select an acceptance ratio of 0.234. In this paper, we point out that although the proof is valid, its significance is questionable, and its application to practical computations is not advisable. The simulation algorithm considered in the proof is very inefficient and produces poor results under all circumstances. |
---|---|
ISSN: | 1875-3892 1875-3892 |
DOI: | 10.1016/j.phpro.2015.07.120 |