Loading…
Acoustic, Thermal and Molecular Interactions of Polyethylene Glycol (2000, 3000, 6000)
Polyethylene Glycol (PEG) is a condensation polymer of ethylene oxide and water. PEG find its application as emulsifying agents, detergents, soaps, plasticizers, ointments, etc. Though the chemical and physical properties of PEG are known, still because of their uses in day to day life, it becomes n...
Saved in:
Published in: | Physics procedia 2015, Vol.70, p.1052-1056 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyethylene Glycol (PEG) is a condensation polymer of ethylene oxide and water. PEG find its application as emulsifying agents, detergents, soaps, plasticizers, ointments, etc. Though the chemical and physical properties of PEG are known, still because of their uses in day to day life, it becomes necessary to study few physical properties like ultrasonic velocity, viscosity and hence adiabatic compressibility, free length, etc. In the present study, an attempt has been made to compute the activation energy and hence to analyse the molecular interactions of aqueous solutions of Polyethylene Glycol of molar mass 2000, 3000 and 6000 at different concentrations (2%, 4%, 6%, 8% and 10%) at different temperatures (303K, 308K, 313K, 318K) by determining relative viscosity, ultrasonic velocity and density. Various parameters like adiabatic compressibility, viscous relaxation time, inter molecular free length, free volume, internal pressure, etc are calculated at 303K and the results are discussed in the light of polymer-solvent interaction. This study helps to understand the behavior of macro-molecules with respect to changing concentration and temperature. Furthermore, viscosity and activation energy results are correlated to understand the increased entanglement of the polymer chains due to the increase in the concentration of a polymer solution that leads to an increase in viscosity and an increase in the activation energy of viscous flow. |
---|---|
ISSN: | 1875-3892 1875-3892 |
DOI: | 10.1016/j.phpro.2015.08.224 |