Loading…
Empirical time and frequency domain models of spectrum use
Dynamic spectrum access (DSA) has been proposed as a solution to the spectrum scarcity problem. However, the models for spectrum use, that are commonly used in DSA research, are either limited in scope or have not been validated against real-life measurement data. In this paper we introduce a flexib...
Saved in:
Published in: | Physical communication 2009-03, Vol.2 (1), p.10-32 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dynamic spectrum access (DSA) has been proposed as a solution to the spectrum scarcity problem. However, the models for spectrum use, that are commonly used in DSA research, are either limited in scope or have not been validated against real-life measurement data. In this paper we introduce a flexible spectrum use model based on extensive measurement results that can be configured to represent various wireless systems. We show that spectrum use is clustered in the frequency domain and should be modelled in the time domain using geometric or lognormal distributions. In the latter case the probability of missed detection is significantly higher due to the heavy-tailed behaviour of the lognormal distribution. The listed model parameters enable accurate modelling of primary user spectrum use in time and frequency domain for future DSA studies. Additionally, they also provide a more empirical basis to develop regulatory or business models. |
---|---|
ISSN: | 1874-4907 1876-3219 |
DOI: | 10.1016/j.phycom.2009.03.001 |