Loading…

A closed-form expression for performance optimization of subcarrier intensity QAM signals-based relay-added FSO systems with APD

This study characterizes the overall bit-error-rate (BER) performance optimization of avalanche photodiode (APD) receiver-based amplify-and-forward (AF) relay-added free-space optical (FSO) communication system. The system of interest uses subcarrier intensity quadrature amplitude modulation (QAM) s...

Full description

Saved in:
Bibliographic Details
Published in:Physical communication 2018-12, Vol.31, p.203-211
Main Authors: Trung, Ha Duyen, Tien Hoa, Nguyen, Huu Trung, Nguyen, Ohtsuki, Tomoaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study characterizes the overall bit-error-rate (BER) performance optimization of avalanche photodiode (APD) receiver-based amplify-and-forward (AF) relay-added free-space optical (FSO) communication system. The system of interest uses subcarrier intensity quadrature amplitude modulation (QAM) signals and subjects to scintillation due to optical turbulence. A weak atmospheric turbulence (clear-air condition) scenario is considered, for which the received signal intensity fluctuation can be modeled as a log-normal random process. A closed-form expression of the overall BER is derived by taking into account the impact of atmospheric loss, turbulence strength, thermal-noise and shot-noise limited conditions. It can be inferred from the numerical results that using AF relay nodes can extend the transmission distance and minimize BER performance of FSO system significantly compared with the direct transmission. Moreover, the selection of APD’s gain values is indispensable to minimize the system’s BER performance. Hence, the designed system could achieve the minimal BER by selecting an optimal APD gain value appropriately. In addition, the optimal gain values of APD significantly depend on various conditions, such as noise temperature, link distance, and the number of relay nodes.
ISSN:1874-4907
1876-3219
DOI:10.1016/j.phycom.2018.04.012